Na condensation of CH3SiHCI2 gives polysilanes of the type ((CH,SiH),(CH3Si),), (wherex + y = 1) whose pyrolysis in a stream of Ar gives Sic and a substantial amount of elemental Si. Treatment of such polysilanes with catalytic quantities of group-IV-metal-organometallic complexes, ((11-C 5H j)2 ZrH2),I, Ti(CH3)r, results in cross-linking processes such that pyrolysis of these polysilanes gives close to stoichiometric SIC (295 wt %) and only very little elemental Si. [
Inorganic and organometallic polymers are macromolecular systems in which the polymer backbone contains elements other than the carbon, oxygen and nitrogen usually found in organic polymers [1]. To take as an example silicon-containing polymers, in the silicones the polymer backbone is composed of the Si-O repeat unit; in polysilazanes, of the Si-N unit; in polysilmethylenes, of the Si-C unit. In the polysilanes there are only silicon atoms in the polymer backbone. Many of the other metalloids and metals among the elements in the Periodic Table have been or, in principle, can be incorporated into polymeric systems, so it is clear that the field of inorganic and organometallic polymers is a very large one. Inorganic and organometallic polymers have been of interest to chemists for a long time. It was the commercial development of the silicones in the 1940's that gave this field of research its modem impetus [2]. Once it was appreciated how useful these versatile organosilicon polymers could be, chemists became interested in the possibility of developing other organometallic (and also inorganic) polymers, ones that might complement or even surpass the silicones as far as useful applications were concerned. Research on inorganic and organometallic polymers became very active in the 1950's and 1960's. Work in this area became an international effort, prompted by the need for new materials that would meet the exacting demands of the jet age that had effectively commenced around the end of World War II. Even greater demands, in terms of materials that would still be useful under extreme conditions, came with the space age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.