SUMMARY The benefits of endurance exercise on general health make it desirable to identify orally active agents that would mimic or potentiate the effects of exercise to treat metabolic diseases. Although certain natural compounds, such as reseveratrol, have endurance-enhancing activities, their exact metabolic targets remain elusive. We therefore tested the effect of pathway-specific drugs on endurance capacities of mice in a treadmill running test. We found that PPARβ/δ agonist and exercise training synergistically increase oxidative myofibers and running endurance in adult mice. Because training activates AMPK and PGC1α, we then tested whether the orally active AMPK agonist AICAR might be sufficient to overcome the exercise requirement. Unexpectedly, even in sedentary mice, 4 weeks of AICAR treatment alone induced metabolic genes and enhanced running endurance by 44%. These results demonstrate that AMPK-PPARδ pathway can be targeted by orally active drugs to enhance training adaptation or even to increase endurance without exercise.
An important requirement for physiologic homeostasis is the detoxification and removal of endogenous hormones and xenobiotic compounds with biological activity. Much of the detoxification is performed by cytochrome P-450 enzymes, many of which have broad substrate specificity and are inducible by hundreds of different compounds, including steroids. The ingestion of dietary steroids and lipids induces the same enzymes; therefore, they would appear to be integrated into a coordinated metabolic pathway. Instead of possessing hundreds of receptors, one for each inducing compound, we propose the existence of a few broad specificity, low-affinity sensing receptors that would monitor aggregate levels of inducers to trigger production of metabolizing enzymes. In support of this model, we have isolated a novel nuclear receptor, termed the steroid and xenobiotic receptor (SXR), which activates transcription in response to a diversity of natural and synthetic compounds. SXR forms a heterodimer with RXR that can bind to and induce transcription from response elements present in steroid-inducible cytochrome P-450 genes and is expressed in tissues in which these catabolic enzymes are expressed. These results strongly support the steroid sensor hypothesis and suggest that broad specificity sensing receptors may represent a novel branch of the nuclear receptor superfamily.[Key Words: Steroid; xenobiotic receptor; nuclear receptor; transcriptional activity] Received July 24, 1998; revised version accepted August 26, 1998. Lipophilic hormones, such as steroids, retinoic acid, thyroid hormone, and vitamin D3, control broad aspects of animal growth, development, and adult organ physiology. The effects of these hormones are mediated by a large superfamily of intracellular receptors that function as ligand-dependent and sequence-specific transcription factors. The nonsteroidal nuclear receptors for thyroid hormone (TR), vitamin D3 (VDR), all-trans retinoic acid (RAR), and fatty acids and eicosanoids (PPAR) form heterodimers with the 9-cis retinoic acid receptor (RXR) that bind bipartite hormone-response elements (HREs) composed of directly repeated half sites related to the sequence AGGTCA (Mangelsdorf and Evans 1995). In contrast, the steroid receptors function as homodimers and bind to palindromic target sequences spaced by three nucleotides . In addition to the known receptors, a large group of structurally related 'orphan' nuclear receptors has been described; that these receptors possess obvious DNA and ligand-binding domains but lack identified ligands . Each has the potential to regulate a distinct endocrine signaling pathway.It is widely viewed that the hormone response is a consequence of the release from an endocrine gland of a ligand that circulates through the blood, and coordinately regulates responses in target tissues by acting through specific nuclear receptors. Hormone responsiveness is dependent on the ability to rapidly clear ligand from the blood and the body so that, in absence of a stimulus, target tissues re...
Circadian clocks coordinate behavioral and physiological processes with daily light-dark cycles by driving rhythmic transcription of thousands of genes. Whereas the master clock in the brain is set by light, pacemakers in peripheral organs, such as the liver, are reset by food availability, although the setting, or "entrainment," mechanisms remain mysterious. Studying mouse fibroblasts, we demonstrated that the nutrient-responsive adenosine monophosphate-activated protein kinase (AMPK) phosphorylates and destabilizes the clock component cryptochrome 1 (CRY1). In mouse livers, AMPK activity and nuclear localization were rhythmic and inversely correlated with CRY1 nuclear protein abundance. Stimulation of AMPK destabilized cryptochromes and altered circadian rhythms, and mice in which the AMPK pathway was genetically disrupted showed alterations in peripheral clocks. Thus, phosphorylation by AMPK enables cryptochrome to transduce nutrient signals to circadian clocks in mammalian peripheral organs.The mammalian hypothalamic suprachiasmatic nucleus (SCN) acts as a master pacemaker, aligning behavioral and physiological rhythms to light-dark cycles (1). Initially, the SCN was thought to be the only site of self-sustaining molecular pacemakers in mammals, but subsequent reports have shown such clocks to be ubiquitous (2,3). Unlike those in the SCN, clocks in non-light-sensitive organs are entrained by daily feeding (2,4,5), which
The nuclear receptor superfamily includes receptors for steroids, retinoids, thyroid hormone and vitamin D, as well as many related proteins. An important feature of the action of the lipophilic hormones and vitamins is that the maintenance of homeostatic function requires both intrinsic positive and negative regulation. Here we provide in vitro and in vivo evidence that identifies the CREB-binding protein (CBP) and its homologue P300 (refs 6,7) as cofactors mediating nuclear-receptor-activated gene transcription. The role of CBP/P300 in the transcriptional response to cyclic AMP, phorbol esters, serum, the lipophilic hormones and as the target of the E1A oncoprotein suggests they may serve as integrators of extracellular and intracellular signalling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.