To work with categorical features, machine learning systems employ embedding tables. These tables can become exceedingly large in modern recommendation systems, necessitating the development of new methods for fitting them in memory, even during training. Some of the most successful methods for table compression are Product-and Residual Vector Quantization (Gray & Neuhoff, 1998). These methods replace table rows with references to k-means clustered "codewords." Unfortunately, this means they must first know the table before compressing it, so they can only save memory during inference, not training. Recent work has used hashing-based approaches to minimize memory usage during training, but the compression obtained is inferior to that obtained by "post-training" quantization. We show that the best of both worlds may be obtained by combining techniques based on hashing and clustering. By first training a hashing-based "sketch", then clustering it, and then training the clustered quantization, our method achieves compression ratios close to those of post-training quantization with the training time memory reductions of hashing-based methods. We show experimentally that our method provides better compression and/or accuracy that previous methods, and we prove that our method always converges to the optimal embedding table for least-squares training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.