Dual-unitary brickwork circuits are an exactly-solvable model for many-body chaotic quantum systems, based on 2-site gates which are unitary in both the time and space directions. Prosen has recently described an alternative model called dual-unitary interactions rounda-face, which we here call clockwork, based on 2-controlled 1-site unitaries composed in a non-brickwork structure, yet with many of the same attractive global properties. We present a 2-categorical framework that simultaneously generalizes these two existing models, and use it to show that brickwork and clockwork circuits can interact richly, yielding new types of generalized heterogeneous circuits. We show that these interactions are governed by quantum combinatorial data, which we precisely characterize. These generalized circuits remain exactly-solvable and we show that they retain the attractive features of the original models such as single-site correlation functions vanishing everywhere except on the causal light-cone. Our presented framework allows us to directly extend the notion of solvable initial states to these biunitary circuits, which are shown to result in maximal entanglement growth and exact thermalization after finitely many time steps under biunitary circuit dynamics.
Dual-unitary circuits have emerged as a minimal model for chaotic quantum many-body dynamics in which the dynamics of correlations and entanglement remains tractable. Simultaneously, there has been intense interest in the effect of measurements on the dynamics of quantum information in many-body systems. In this work we introduce a class of models combining dual-unitary circuits with particular projective measurements that allow the exact computation of dynamical correlations of local observables, entanglement growth, and steady-state entanglement. We identify a symmetry preventing a measurement-induced phase transition and present exact results for the intermediate critical purification phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.