The necessity for new sources for greener and cleaner energy production to replace the existing ones has been increasingly growing in recent years. Of those new sources, the hydrogen evolution reaction has a large potential. In this work, for the first time, MoSe /Mo core-shell 3D-hierarchical nanostructures are created, which are derived from the Mo 3D-hierarchical nanostructures through a low-temperature plasma-assisted selenization process with controlled shapes grown by a glancing angle deposition system.
Conventional methods to prepare large‐area graphene for transparent conducting electrodes involve the wet etching of the metal catalyst and the transfer of the graphene film, which can degrade the film through the creation of wrinkles, cracks, or tears. The resulting films may also be obscured by residual metal impurities and polymer contaminants. Here, it is shown that direct growth of large‐area flat nanographene films on silica can be achieved at low temperature (400 °C) by chemical vapor deposition without the use of metal catalysts. Raman spectroscopy and TEM confirm the formation of a hexagonal atomic network of sp2‐bonded carbon with a domain size of about 3–5 nm. Further spectroscopic analysis reveals the formation of SiC between the nanographene and SiO2, indicating that SiC acts as a catalyst. The optical transmittance of the graphene films is comparable with transferred CVD graphene grown on Cu foils. Despite the fact that the electrical conductivity is an order of magnitude lower than CVD graphene grown on metals, the sheet resistance remains 1–2 orders of magnitude better than well‐reduced graphene oxides.
The tuning of carrier concentrations in graphene is at the heart of graphenebased nanoelectronic and optoelectronic applications. Molecular doping, that is, taking charges from the adsorbed molecules, shows promise as a means by which to change carrier density in graphene while retaining relative high mobility. However, poor control over doping concentrations is a major obstacle to practical applications. Here, we show that lattice disorders induced by plasma exposure can be used as anchor groups. These groups serve as centers of molecule adsorption and facilitate orbital overlap between graphene and adsorbates (melamine), thus allowing for selective and tunable doping. The carrier concentration revealed by Raman shift can be progressively adjusted up to 1.4 × 10 13 cm − 2 , depending on the coverage of melamine molecules and doping temperature. The electronic band structures of the graphene-melamine complex were calculated using density functional theory for adsorption over ideal graphene and over non-ideal graphene with StoneWales (5-7-7-5) defects. It is shown that charge transfer for adsorption on ideal graphene is negligible, while adsorption on graphene with Stone-Wales defects results in weak hole doping, which is consistent with the progressive increase of carrier density with increasing melamine coverage.
The formation of PtSe -layered films is reported in a large area by the direct plasma-assisted selenization of Pt films at a low temperature, where temperatures, as low as 100 °C at the applied plasma power of 400 W can be achieved. As the thickness of the Pt film exceeds 5 nm, the PtSe -layered film (five monolayers) exhibits a metallic behavior. A clear p-type semiconducting behavior of the PtSe -layered film (≈trilayers) is observed with the average field effective mobility of 0.7 cm V s from back-gated transistor measurements as the thickness of the Pt film reaches below 2.5 nm. A full PtSe field effect transistor is demonstrated where the thinner PtSe , exhibiting a semiconducting behavior, is used as the channel material, and the thicker PtSe , exhibiting a metallic behavior, is used as an electrode, yielding an ohmic contact. Furthermore, photodetectors using a few PtSe -layered films as an adsorption layer synthesized at the low temperature on a flexible substrate exhibit a wide range of absorption and photoresponse with the highest photocurrent of 9 µA under the laser wavelength of 408 nm. In addition, the device can maintain a high photoresponse under a large bending stress and 1000 bending cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.