With the increase in the number of communication devices, the requirement for higher bandwidth is essential. To achieve this goal, research and industrial communities have both suggested that future wireless systems will take advantage of the numerous emerging technologies. Utilization of Cognitive Radio (CR) for the next-generation Fifth Generation (5G) communication technology is the major advancement for getting a higher bandwidth in a cellular communication network. In this paper, we present a comprehensive study of CR from the perspectives of spectrum allocation schemes, impact and role of MAC layer in spectrum sensing and sharing, CR application in multi-hop wireless networks, and challenges associated with channel selection and packet routing in multi-hop heterogeneous CR networks. This paper also presents the analysis, in literature, of a range of intelligent routing protocols that are considered viable for packets routing in CR networks. The need to address the issue of spectrum depletion and the apparent underutilization of available scarce spectrum resources in existing wireless networks is the primary motivation behind this study. Considering the fact that CR technology can potentially maximize the utilization of bulk of the unused communication spectrum bands for the future 5G of wireless network and beyond.
As the enterprise of the “Internet of Things” is rapidly gaining widespread acceptance, sensors are being deployed in an unrestrained manner around the world to make efficient use of this new technological evolution. A recent survey has shown that sensor deployments over the past decade have increased significantly and has predicted an upsurge in the future growth rate. In health-care services, for instance, sensors are used as a key technology to enable Internet of Things oriented health-care monitoring systems. In this paper, we have proposed a two-stage fundamental approach to facilitate the implementation of such a system. In the first stage, sensors promptly gather together the particle measurements of an android application. Then, in the second stage, the collected data are sent over a Femto-LTE network following a new scheduling technique. The proposed scheduling strategy is used to send the data according to the application’s priority. The efficiency of the proposed technique is demonstrated by comparing it with that of well-known algorithms, namely, proportional fairness and exponential proportional fairness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.