Biodiversity describes the variety of life and may influence properties and processes of ecosystems, such as biomass production and resistance to disturbance. We investigated the effects of multiple facets of biodiversity – species richness and composition of the community, and intraspecific diversity in two key species – on both production and resistance of experimentally‐assembled biological soil crusts (biocrusts). We found that productivity was most strongly influenced by community composition (variation in the presence and relative proportions of community members), and weakly positively influenced by species richness. Intraspecific diversity, encompassing both the richness and composition of clones, had a neutral effect on community productivity within one focal species (Syntrichia caninervis), but a moderately negative effect on productivity within the other focal species (S. ruralis). Resistance was also most strongly influenced by community composition, although different sets of species contributed most to resistance and production. Resistance was not affected by either species richness or intraspecific diversity in either focal species. Our findings supported our general expectation that community‐level facets of biodiversity would be more influential than intraspecific diversity within a species because trait variability among species is usually greater than that within. These results also indicated that although species richness is often thought to strongly affect both productivity and resistance, the presence, absence and relative abundance of particular species may be more influential to both. Simultaneous manipulation of multiple facets of biodiversity in experiments may lead to a more complete understanding of the variety of ways in which biodiversity may regulate ecological systems.
As wildfires increase in extent and severity in the western United States, land managers need new tools to stabilize and rehabilitate impacted hillslopes. One potential tool is the use of three disturbance‐adapted mosses Ceratodon purpureus (Redshank), Funaria hygrometrica (Cord moss), and Bryum argenteum (Silvergreen moss), collectively known as fire mosses. By growing and adding vegetative propagules in the form of gametophyte fragments to burned hillslopes, land managers could potentially increase the rate of moss colonization and stabilize soils. A first step in developing a native plant materials rehabilitation technique is overcoming propagule limitations using ex situ cultivation. We focused on greenhouse cultivation of moss gametophyte fragments allowing us to grow vegetative propagules with control over atmospheric, edaphic, and hydrologic conditions. In this experiment, we grew fire mosses using an easily scalable technique and commercially available materials. We demonstrated repeated success growing these species in the greenhouse and fine‐tuned harvesting techniques to increase productivity. We found that fire moss achieved high cover in 2 months when grown on organic substrate with constant wicking hydration and a protective shade covering, but growth was not favored by addition of burned materials. We successfully upscaled our growing technique, and developed efficient harvest methods. This success overcomes an initial barrier to testing and developing fire mosses as a novel rehabilitation technique.
Fire mosses, including Ceratodon purpureus, Funaria hygrometrica and Bryum argenteum, can achieve high cover within months to years after high-severity fire, but do so heterogeneously across space and time. We conducted a survey of moss cover and erosion-related functions after 10 wildfires in Pinus ponderosa and mixed-conifer forests of the southwestern USA. We sampled 65 plots in high-severity patches, stratifying by elevation and insolation over each fire. Using three landscape-scale predictor variables and one temporal predictor, we explained 37% of the variance in fire moss cover using a random forest model. The predictors in order of importance were: equinox insolation (sunlight/day), pre-fire vegetation type, pre-fire soil organic carbon and time since fire. Within each plot we examined differences between bare and moss-covered soil surface microsites and found moss-covered microsites had a mean increase of 55% water infiltration, 106% shear strength, 162% compressive strength and 195% aggregate stability. We tested a suite of nutrients, finding 35% less manganese in the moss-covered soil. This research demonstrated that post-fire colonisation by moss is predictable and that colonisation improves soil surface erosion resistance and hydrological function, with implications for managing severely burned landscapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.