Pace prevention of atrial tachyarrhythmias is based in part on the reduction of intra-atrial (IAA) and/or inter-atrial (IEA) conduction. We previously introduced a novel pacing mode using floating atrial ring electrodes on a VDD-lead (BIdirectional MO nophasic impulSe: BIMOS). The effects of BIMOS pacing on IAA and IEA conduction times has not been studied. In nine Merino sheep electrode catheters were placed at the His-Bundle (HBE), high right atrium (HRA), coronary sinus ostium (Cs-Os), and left lateral atrium (LLA). A VDD-lead was introduced with floating electrodes in the high and mid right atrium (Floating). IAA (S/P-HRA, S/P-Cs-Os, S/P-HBE, S/P-Floating), IEA conduction times (S/P-LLA), and P-wave duration (PD) were measured during sinus rhythm (S), during bipolar cathodal pacing (P) in the HRA, in the Cs-Os position, as well as during BIMOS floating pacing. The mean PD during S was significantly shorter than during HRA- (66. 6+/-12.8ms; vs. 116.2+/-11.1ms; p<0.05) and Cs-Os-P (66.6+/-12.8ms vs. 94.4+/-9.0ms; p<0.05). In comparison to HRA-P, BIMOS configuration lead to a significant reduction of the P-wave duration (116.2+/-11.1ms vs. 85. 4+/-8.8ms; p<0.05). During BIMOS pacing, the global atrial conduction time was significantly shorter than during pacing in the HRA and Cs-Os position. The results of this study demonstrate a clear reduction of IAA and IEA conduction times using BIMOS configurations compared to conventional HRA-P. Furthermore, BIMOS pacing produced a more homogeneous atrial activation when compared with conventional HRA- and Cs-Os-P.
The C3a receptor (C3aR) is expressed on most human peripheral blood leukocytes with the exception of resting lymphocytes, implying a much higher pathophysiological relevance of the anaphylatoxin C3a as a proinflammatory mediator than previously thought. The response to this complement split product must be tightly regulated in situations with sustained complement activation to avoid deleterious effects caused by overactivated inflammatory cells. Receptor internalization, an important control mechanism described for G protein-coupled receptors, was investigated. Using rabbit polyclonal anti-serum directed against the C3aR second extracellular loop, a flow cytometry-based receptor internalization assay was developed. Within minutes of C3a addition to human granulocytes, C3aR almost completely disappeared from the cell surface. C3aR internalization could also be induced by PMA, an activator of protein kinase C. Similarly, monocytes, the human mast cell line HMC-1, and differentiated monocyte/macrophage-like U937-cells exhibited rapid agonist-dependent receptor internalization. Neither C5a nor FMLP stimulated any cross-internalization of the C3aR. On the contrary, costimulation of granulocytes with C5a, but not FMLP, drastically decreased C3aR internalization. This effect could be blocked by a C5aR-neutralizing mAb. HEK293-cells transfected with the C3aR, with or without Gα16, a pertussis toxin-resistant G protein α subunit required for C3aR signal transduction in these cells, did not exhibit agonist-dependent C3aR internalization. Additionally, preincubation with pertussis toxin had no effect on C3a-induced internalization on PMNs. C3aR internalization is a rapid negative control mechanism and is influenced by the C5aR pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.