Over the past 50 years European populations of the lesser horseshoe bat Rhinolophus hipposideros have severely declined, probably because of the loss of foraging habitat. To date, studies of the foraging behaviour of this species have been limited as its low mass (4±8 g) precluded the use of radio-telemetry because commercially available radio-transmitters exceeded 10% of its body mass. In this study, radiotransmitters weighing < 0.35 g were built. These increased the body mass of the animals from 4.5% to 8.1%, with no demonstrable adverse effect on their¯ight behaviour. The habitat selection of eight female lesser horseshoe bats was studied in Monmouthshire, U.K. The bats had foraging ranges between 12 and 53 ha (100% kernel). Although one bat foraged 4.2 km from the roost, for 50% of the time tracked bats were recorded within 600 m of the nursery roost. The estimated density within 200 m of the roost was 5.8 foraging bats/ha. This decreased to 0.01 bats/ha at 1200 m. Compositional analysis revealed that this species used woodlands, predominately broadleaf, more than any other habitat. In addition, the bats foraged in areas of high habitat diversity. Conservation management of this species should concentrate on such areas within 2.5 km of the nursery roost.
The age profile of populations fundamentally affects their conservation status. Yet, age is frequently difficult to assess in wild animals. Here, we assessed the use of DNA methylation of homologous genes to establish the age structure of a rare and elusive wild mammal: the Bechstein's bat (Myotis bechsteinii). We collected 62 wing punches from individuals whose ages were known as a result of a long-term banding study. DNA methylation was measured at seven CpG sites from three genes, which have previously shown age-associated changes in humans and laboratory mice. All CpG sites from the tested genes showed a significant relationship between DNA methylation and age, both individually and in combination (multiple linear regression R = 0.58, p < 0.001). Despite slight approximation around estimates, the approach is sufficiently precise to place animals into practically useful age cohorts. This method is of considerable practical benefit as it can reliably age individual bats. It is also much faster than traditional capture-mark-recapture techniques, with the potential to collect information on the age structure of an entire colony from a single sampling session to better inform conservation actions for Bechstein's bats. By identifying three genes where DNA methylation correlates with age across distantly related species, this study also suggests that the technique can potentially be applied across a wide range of mammals.
After historical declines in population sizes and ranges, we compare and contrast the recent history and contemporary variation in the status of Great Britain's eight native mammalian carnivore species from the 1960s to 2017. Wildcat Felis silvestris conservation status is unfavourable and is masked by hybridisation with domestic cats Felis catus. Red foxes Vulpes vulpes remain widespread but are currently declining. European otter Lutra lutra, European pine marten Martes martes and European polecat Mustela putorius populations are characterised by rapid recovery. Otters have almost completely recolonised Great Britain, polecats have expanded their range throughout southern Britain from refugia in Wales and pine martens have expanded their range from the Scottish Highlands. European badgers Meles meles have generally increased in population density. Status assessments of stoats Mustela erminea and weasels Mustela nivalis are data‐deficient but available evidence suggests that stoats may have increased while weasels may have declined. Anthropogenic processes influencing carnivore status include legal protections, habitat quality, reintroductions, predator control, pollutants, hybridisation and diseases and their associated control practices. Population effects of contaminants, such as anticoagulant rodenticides, remain poorly characterised. The widespread interface with domestic and feral cats makes the wildcat's situation precarious. Recent declines in rabbit Oryctolagus cuniculus populations are a concern, given that several carnivore species depend on them as food. We conclude that, with the exception of the wildcat, the status of Great Britain's mammalian carnivores has markedly improved since the 1960s. Better understanding of the social aspects of interactions between humans and expanding predator populations is needed if conflict is to be avoided and long‐term co‐existence with people is to be possible.
Artificial nighttime lighting has many effects on biodiversity. A proposed environmental management option, primarily to save energy, is to alter the duration of night lighting. Using the greater horseshoe bat Rhinolophus ferrumequinum as an example of a photophobic species, we explored roadside behaviour patterns throughout the night to assess the potential impact of part-night lighting. We found a large primary peak in activity 1 h after sunset, followed by a smaller secondary peak before sunrise. Simulated part-night lighting scenarios reveal that to capture a large proportion of bat activity, streetlights should be switched off before midnight. Current proposed uses of part-night lighting are unlikely to capture natural peaks in activity for nocturnal species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.