Hereditary nonpolyposis colorectal cancer (HNPCC), also known as Lynch syndrome, is a common autosomal dominant syndrome characterized by early age at onset, neoplastic lesions, and microsatellite instability (MSI). Because cancers with MSI account for approximately 15% of all colorectal cancers and because of the need for a better understanding of the clinical and histologic manifestations of HNPCC, the National Cancer Institute hosted an international workshop on HNPCC in 1996, which led to the development of the Bethesda Guidelines for the identification of individuals with HNPCC who should be tested for MSI. To consider revision and improvement of the Bethesda Guidelines, another HNPCC workshop was held at the National Cancer Institute in Bethesda, MD, in 2002. In this commentary, we summarize the Workshop presentations on HNPCC and MSI testing; present the issues relating to the performance, sensitivity, and specificity of the Bethesda Guidelines; outline the revised Bethesda Guidelines for identifying individuals at risk for HNPCC; and recommend criteria for MSI testing.
The contribution of BRCA1 and BRCA2 to inherited breast cancer was assessed by linkage and mutation analysis in 237 families, each with at least four cases of breast cancer, collected by the Breast Cancer Linkage Consortium. Families were included without regard to the occurrence of ovarian or other cancers. Overall, disease was linked to BRCA1 in an estimated 52% of families, to BRCA2 in 32% of families, and to neither gene in 16% (95% confidence interval [CI] 6%-28%), suggesting other predisposition genes. The majority (81%) of the breast-ovarian cancer families were due to BRCA1, with most others (14%) due to BRCA2. Conversely, the majority of families with male and female breast cancer were due to BRCA2 (76%). The largest proportion (67%) of families due to other genes was found in families with four or five cases of female breast cancer only. These estimates were not substantially affected either by changing the assumed penetrance model for BRCA1 or by including or excluding BRCA1 mutation data. Among those families with disease due to BRCA1 that were tested by one of the standard screening methods, mutations were detected in the coding sequence or splice sites in an estimated 63% (95% CI 51%-77%). The estimated sensitivity was identical for direct sequencing and other techniques. The penetrance of BRCA2 was estimated by maximizing the LOD score in BRCA2-mutation families, over all possible penetrance functions. The estimated cumulative risk of breast cancer reached 28% (95% CI 9%-44%) by age 50 years and 84% (95% CI 43%-95%) by age 70 years. The corresponding ovarian cancer risks were 0.4% (95% CI 0%-1%) by age 50 years and 27% (95% CI 0%-47%) by age 70 years. The lifetime risk of breast cancer appears similar to the risk in BRCA1 carriers, but there was some suggestion of a lower risk in BRCA2 carriers <50 years of age.
In Western Europe and the United States approximately 1 in 12 women develop breast cancer. A small proportion of breast cancer cases, in particular those arising at a young age, are attributable to a highly penetrant, autosomal dominant predisposition to the disease. The breast cancer susceptibility gene, BRCA2, was recently localized to chromosome 13q12-q13. Here we report the identification of a gene in which we have detected six different germline mutations in breast cancer families that are likely to be due to BRCA2. Each mutation causes serious disruption to the open reading frame of the transcriptional unit. The results indicate that this is the BRCA2 gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.