The Multi Stage Collector (MSC™) concept for ultra-fine particulate control not only retains the best advantages of current state-of-the-art technology but also makes significant improvements. The new MSC™ design provides a synergistic combination of both single- and two-stage electrostatic precipitation while incorporating an additional collector-stage by filtering the gas exiting the collector through a barrier collector-zone. This arrangement ensures that essentially all dust would be detained in this final stage. The MSC™ contains multiple narrow and wide zones formed by a plurality of parallel corrugated plates. Enclosed in the narrow zones are discharge electrodes. These electrodes provide a non-uniform electric field leading to corona discharge. The corona discharge causes particulate matter in the gas flow to become charged. Wide regions contain barrier filters thus creating the two-stage precipitator with relatively uniform electric field. In these regions, particles are collected on both plates and on the porous barrier elements, which also act as the final filtering stage. Results of the applications analyses and future development work are discussed. The gas flow analyses with an aid of the CFD model are presented below.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.