Surface-selective characterization of materials with NMR has been quite useful in the few cases where sufficient sensitivity and selectivity have been achieved.1 In this communication we report the use of laser-polarized xenon as the source of magnetization for a high-field cross polarization experiment, obtaining surfaceselective magnetization transfer. Gas-phase xenon with nuclear spin polarization several orders of magnitude higher than thermal Boltzmann levels in a high magnetic field can be produced using optically pumped rubidium vapor according to the pioneering work of Happer and co-workers.1 2 The angular momentum of circularly polarized laser light is transferred, via the rubidium
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.