Surface photovoltage (SPV) spectroscopy is a powerful tool for studying electronic defects on semiconductor surfaces, at interfaces, and in bulk for a wide range of materials. Undoped and Cobalt-doped TiO 2 (CTO) thin films were deposited on Crystalline Silicon (c-Si) and Flourine doped Tin oxide (SnO 2 :F) substrates by chemical spray pyrolysis at a substrate temperature of 400˝C. The concentration of the Co dopant in the films was determined by Rutherford backscattering spectrometry and ranged between 0 and 4.51 at %. The amplitude of the SPV signals increased proportionately with the amount of Co in the films, which was a result of the enhancement of the slow processes of charge separation and recombination. Photogenerated holes were trapped at the surface, slowing down the time response and relaxation of the samples. The surface states were effectively passivated by a thin In 2 S 3 over-layer sprayed on top of the TiO 2 and CTO films.
Ion layer gas reaction (ILGAR) method allows for deposition of Cl-containing and Cl-free In2S3 layers from InCl3 and In(OCCH3CHOCCH3)3 precursor salts, respectively. A comparative study was performed to investigate the role of Cl on the diffusion of Cu from CuSCN source layer into ILGAR deposited In2S3 layers. The Cl concentration was varied between 7 and 14 at.% by varying deposition parameters. The activation energies and exponential pre-factors for Cu diffusion in Cl-containing samples were between 0.70 to 0.78 eV and between 6.0 × 10 −6 and 3.2 × 10 −5 cm 2 /s. The activation energy in Cl-free ILGAR In2S3 layers was about three times less compared to the Cl-containing In2S3, and the pre-exponential constant six orders of magnitude lower. These values were comparable to those obtained from thermally evaporated In2S3 layers. The residual Cl-occupies S sites in the In2S3 structure leading to non-stoichiometry and hence different diffusion mechanism for Cu compared to stoichiometric Cl-free layers.
The nature of barriers for atomic transport in In2S3 layers has been varied by addition of chlorine. Diffusion of Cu(I) from a removable CuSCN source was used to probe the variation of the barriers. The Meyer-Neldel (compensation) rule was observed with a Meyer-Neldel energy (EMN) and a proportionality prefactor (D00) amounting to 40 meV and 5 × 10−14 cm2/s, respectively. D00 shows that the elementary excitation step is independent of the specific mechanism and nature of the barrier including different densities of Cl in In2S3. The value of EMN implies that coupling of the diffusing species to an optical-phonon bath is the source of the multiple excitations supplying the energy to overcome the diffusion barriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.