Ten [C(8)C(1)Im](+) (1-methyl-3-octylimidazolium)-based ionic liquids with anions Cl(-), Br(-), I(-), [NO(3)](-), [BF(4)](-), [TfO](-), [PF(6)](-), [Tf(2)N](-), [Pf(2)N](-), and [FAP](-) (TfO=trifluoromethylsulfonate, Tf(2)N=bis(trifluoromethylsulfonyl)imide, Pf(2)N=bis(pentafluoroethylsulfonyl)imide, FAP=tris(pentafluoroethyl)trifluorophosphate) and two [C(8)C(1)C(1)Im](+) (1,2-dimethyl-3-octylimidazolium)-based ionic liquids with anions Br(-) and [Tf(2)N](-) were investigated by using X-ray photoelectron spectroscopy (XPS), NMR spectroscopy and theoretical calculations. While (1)H NMR spectroscopy is found to probe very specifically the strongest hydrogen-bond interaction between the hydrogen attached to the C(2) position and the anion, a comparative XPS study provides first direct experimental evidence for cation-anion charge-transfer phenomena in ionic liquids as a function of the ionic liquid's anion. These charge-transfer effects are found to be surprisingly similar for [C(8)C(1)Im](+) and [C(8)C(1)C(1)Im](+) salts of the same anion, which in combination with theoretical calculations leads to the conclusion that hydrogen bonding and charge transfer occur independently from each other, but are both more pronounced for small and more strongly coordinating anions, and are greatly reduced in the case of large and weakly coordinating anions.
The ionic liquid 1-ethyl-3-methylimidazolium acetate [C(2)C(1)Im][OAc] shows a great potential to dissolve strongly hydrogen bonded materials, related with the presence of a strong hydrogen bond network in the pure liquid. A first step towards understanding the solvation process is characterising the hydrogen bonding ability of the ionic liquid. The description of hydrogen bonds in ionic liquids is a question under debate, given the complex nature of this media. The purpose of the present article is to rationalise not only the existence of hydrogen bonds in ionic liquids, but also to analyse their influence on the structure of the pure liquid and how the presence of water, an impurity inherent to ionic liquids, affects this type of interaction. We perform an extensive study using ab initio molecular dynamics on the structure of mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate with water, at different water contents. Hydrogen bonds are present in the pure liquid, and the presence of water modifies and largely disturbs the hydrogen bond network of the ionic liquid, and also affects the formation of other impurities (carbenes) and the dipole moment of the ions. The use of ab initio molecular dynamics is the recommended tool to explore hydrogen bonding in ionic liquids, as an explicit electronic structure calculation is combined with the study of the condensed phase.
In the present computational work, we develop a new tool for our trajectory analysis program TRAVIS to analyze the well-known behavior of liquids to separate into microphases. The dissection of the liquid into domains of different subsets, for example, in the case of fluorinated ionic liquids with anionic and cationic head groups (forming together the polar domain), fluorous, and alkyl subsets is followed by radical Voronoi tessellation. This leads to useful average quantities of the subset neighbor count, that is, the domain count that gives the amount of particular domains in the liquid, the domain volume and surface, as well as the isoperimetric quotient, which provides a measure of the deviation of the domains from a spherical shape. Thus, the newly implemented method allows analysis of the domains in terms of their numbers and shapes on a qualitative and also quantitative basis. It is a simple, direct, and automated analysis that does not need evaluation of the structure beforehand in terms of, for example, first solvent shell minima. In the microheterogeneous ionic liquids that we used as examples, the polar subsets always form a single domain in all investigated liquids. Although the fluorous side chains are also more or less connected in one or, maximally, two domains, the alkyl phases are dispersed.
We present here the possibility of forming triphilic mixtures from alkyl- and fluoroalkylimidazolium ionic liquids, thus, macroscopically homogeneous mixtures for which instead of the often observed two domains—polar and nonpolar—three stable microphases are present: polar, lipophilic, and fluorous ones. The fluorinated side chains of the cations indeed self-associate and form domains that are segregated from those of the polar and alkyl domains. To enable miscibility, despite the generally preferred macroscopic separation between fluorous and alkyl moieties, the importance of strong hydrogen bonding is shown. As the long-range structure in the alkyl and fluoroalkyl domains is dependent on the composition of the liquid, we propose that the heterogeneous, triphilic structure can be easily tuned by the molar ratio of the components. We believe that further development may allow the design of switchable, smart liquids that change their properties in a predictable way according to their composition or even their environment.
We present a comprehensive molecular dynamics simulation study on 1-butyl-3-methylimidazolium ionic liquids and their fluorinated analogs. The work focused on the effect of fluorination at varying anions. The main findings are that the fluorination of the cations side chain increases overall structuring, especially the aggregation of cation side chain. Furthermore, large and weakly coordinating anions tend to occupy on-top positions of the cation and decrease the aggregation of cation side chains, most likely due to enhanced alkyl-anion interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.