Polymers such as Dacron and polytetrafluoroethylene (PTFE) have been used in high flow states with relative success but with limited application at lower flow states. Newer polymers with greater compliance, biomimicry, and ability to evolve into hybrid prostheses, suitable as smaller vessels, are now being introduced. In view of the advances in tissue engineering, this makes possible the creation of an ideal off-the-shelf bypass graft. We present a broad overview of the current state of prosthetic bypass grafts.
The development of intimal hyperplasia (IH) near the anastomosis of a vascular graft to artery is directly related to changes in the wall shear rate distribution. Mismatch in compliance and diameter at the end-to-end anastomosis of a compliant artery and rigid graft cause shear rate disturbances that may induce intimal hyperplasia and ultimately graft failure. The principal strategy being developed to prevent IH is based on the design and fabrication of compliant synthetic or innovative tissue-engineered grafts with viscoelastic properties that mirror those of the human artery. The goal of this review is to discuss how mechanical properties including compliance mismatch, diameter mismatch, Young's modulus and impedance phase angle affect graft failure due to intimal hyperplasia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.