Polysialic acid (polySia) is a long polyanionic polymer (with the degree of polymerization, DP, up to 200) of negatively charged sialic acid monomers. PolySia chains are bound to the external surface of some neuroinvasive bacterial cells and neural cells. PolySia serves as a potent regulator of cell interactions via its unusual biophysical properties. In the present paper, the analysis, based on the Goldman-Hodgkin-Katz equation, of transmembrane potential changes resulting from transmembrane translocation of polySia is performed. The relationships between the transmembrane potential and the polySia DP (up to 200), the temperature, the cation/ anion permeability ratio, and the inner/outer concentration ratio of polySia has been plotted and discussed. The maximal membrane potential changes, up to 118 mV, were found for a permeability ratio greater than one. The increase of the polySia chain length resulted in the diminution of this effect. The temperature-dependent changes in membrane potential were less than 7 mV in the range 0-50 degrees C. The change in the concentration ratio (into its reciprocal) resulted in a mirror reflection of the membrane potential curves. The results show that the expression of polySia chains in bacterial cells can be responsible for the modulation of the transmembrane potential of the bacterial inner membrane. We suggest that the polySia chains can influence the transmembrane potential of neural cell membranes in a similar way. This analysis also describes the effect of the transmembrane translocation of negatively charged polyanionic polynucleotydes on the cell membrane potential.
Transmembrane translocation of polyion homopolymers takes place in the case of polyanionic polysialic acid (polySia), polyanionic polynucleotides and polycationic polypeptides. The purpose of this work was to determine the role of membrane electrical parameters on the kinetics of polyion translocation, the influence of polysialic acid on ion adsorption on positively charged membrane surface and the dynamics of the phospholipid hydrocarbon chains and choline group by using 1H-NMR. The analysis of polyion translocation was performed by using the electrical equivalent circuit of the membrane for the initial membrane potential equal to zero. The changes in polysialic acid flux was up to 75% after 1 ms in comparison with the zero-time flux. Both a decrease of membrane conductance and an increase of polyion chain length resulted in the diminution of this effect. An increase of praseodymium ions adsorption to positively charged liposomes and an increase of the rate of segmental movement of the -CH2 and -CH3 groups, and the choline headgrup of lipid molecules, was observed in the presence of polySia. The results show that the direction of the vectorial polyion translocation depends both on the membrane electrical properties and the degree of polymerization of the polymer, and that polysialic acid can modulate the degree of ion adsorption and the dynamics of membrane lipids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.