IntroductionContemporary ophthalmology knows many methods of measuring intraocular pressure, namely the methods of non-contact and impression applanation tonometry. In non-contact applanation tonometers, e.g. the Corvis, the corneal flattening is caused by an air puff. Image registration of the corneal deflection performed by a tonometer enables to determine other interesting biomechanical parameters of the eye, which are not available in the tonometer. The measurement of new selected parameters is presented in this paper.Material and methodImages with an M × N × I resolution of 200 × 576 × 140 pixels were acquired from the Corvis device in the source recording format *.cst. A total of 13'400 2D images of patients examined routinely in the Clinical Department of Ophthalmology, in District Railway Hospital in Katowice, Poland, were analysed in accordance with the Declaration of Helsinki. A new method has been proposed for the analysis of corneal deflection images in the Corvis tonometer with the use of the Canny edge detection method, mathematical morphology methods and context-free operations.ResultsThe resulting image analysis tool allows determination of the response of the cornea and the entire eyeball to an air puff. The paper presents the method that enables the measurement of the amplitude of curvature changes in the frequency range from 150 to 500 Hz and automatic designation of the eyeball movement direction. The analysis of these data resulted in 3 new features of dynamics of the eye reaction to an air puff. Classification of these features enabled to propose 4 classes of deformation. The proposed algorithm allows to obtain reproducible results fully automatically at a time of 5 s per patient using the Core i5 CPU M460 @ 2.5GHz 4GB of RAM.ConclusionsThe paper presents the possibility of using a profiled algorithm of image analysis, proposed by the authors, to measure additional cornea deformation parameters. The new tool enables automatic measurement of the additional new parameters when using the Corvis tonometer. A detailed clinical examination based on this method will be presented in subsequent papers.
Abstract-Our aim was to ascertain whether the ultrasonic measurement of longitudinal corneal apex displacements carried out in a proper headrest is a credible method of ocular pulse detection. To distinguish between longitudinal movements of the eye globe treated as a rigid body and ocular surface expansion caused by the variations of the eye-globe volume, two ultrasound distance sensors were applied to noninvasively measure displacements of cornea and sclera. The same sensors were used to examine the influence of the anterio-posterior movements of a fixed head on the registration of corneal apex pulsation. In both experiments ECG signals were synchronically recorded. Time, spectral and coherence analysis obtained for four healthy subjects showed that the ocular surface expansion due to pulsatile ocular blood flow is the main component of longitudinal corneal displacement. Ocular surface pulsation is always affected by the head movement. However, there exist some unique properties of signals, which help to distinguish between head and eye movements. A rigid headrest and a bite bar are required to stabilize the head during ocular pulse measurement. Ultrasonic technique enables noninvasive and accurate in-vivo measurement of corneal pulsation which could be of interest for indirectly estimating intraocular pressure propagation and pulsatile ocular blood flow component.
Purpose To study the naturally occurring kinetic characteristics of corneal surface. Methods The right eyes of three subjects (young, early presbyope, and presbyope) were examined. Cardiac signal and longitudinal corneal apex movements were simultaneously measured with electrocardiography (ECG) and a high-speed videokeratoscope, respectively. Time, frequency, and combined timefrequency representations of the acquired signals were derived to establish their temporal and spectral contents. Coherence analysis was used to assess the correlation between the corneal apex velocities and the cardiopulmonary system. Results In all measurements, longitudinal corneal apex velocity signals showed close correlation with the corresponding ECG signals. The signatures of the pulse frequency, which was inferred from the ECG spectra and their variations in time, were clearly visible in the spectral content of corneal apex velocities. For the young subject, the correlation was the strongest and all of the spectral content of the pulse signal including the harmonics was propagating to the corneal apex velocities. For the other two subjects, there was a clear propagation of the pulse signal itself but not of all pulse harmonics. Conclusions Longitudinal movements of the corneal apex are closely related to the cardiopulmonary system. The differences in propagation of pulse harmonics to the corneal apex velocities for different subjects suggest that the frequency characteristics of apex velocity could be related to pulsative variations in the intraocular pressure and biomechanical properties of the eye. These findings could potentially be used in noninvasive assessment of the hemodynamic status of the eye with high-speed videokeratoscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.