Graphical AbstractAn illustrative scheme summarizing the main outcomes in Swiss mice fed high-fat diet (HFD), with their exact time of onset of changes in the hippocampus. An increase in the expression of proinflammatory cytokines, together with the permeability of the blood–brain barrier was detected after 2 days of HFD. Even in the first week of dietary intervention, memory and learning impairment, depressive-like behavior, and synaptic changes were observed at 3, 5, and 7 days, respectively. Later hippocampal alterations (after 4 weeks of HFD consumption) include mitochondrial dysfunction and astrocytic activation.
Key points Dietary nitrate is a prominent therapeutic strategy to mitigate some metabolic deleterious effects related to obesity. Mitochondrial dysfunction is causally linked to adipose tissue inflammation and insulin resistance. Whole‐body glucose tolerance is prevented by nitrate independent of body weight and energy expenditure. Dietary nitrate reduces epididymal adipose tissue inflammation and mitochondrial reactive oxygen species emission while preserving insulin signalling. Metabolic beneficial effects of nitrate consumption are associated with improvements in mitochondrial redox balance in hypertrophic adipose tissue. Abstract Evidence has accumulated to indicate that dietary nitrate alters energy expenditure and the metabolic derangements associated with a high fat diet (HFD), but the mechanism(s) of action remain incompletely elucidated. Therefore, we aimed to determine if dietary nitrate (4 mm sodium nitrate via drinking water) could prevent HFD‐mediated glucose intolerance in association with improved mitochondrial bioenergetics within both white (WAT) and brown (BAT) adipose tissue in mice. HFD feeding caused glucose intolerance (P < 0.05) and increased body weight. As a result of higher body weight, energy expenditure increased proportionally. HFD‐fed mice displayed greater mitochondrial uncoupling and a twofold increase in uncoupling protein 1 content within BAT. Within epididymal white adipose tissue (eWAT), HFD increased cell size (i.e. hypertrophy), mitochondrial H2O2 emission, oxidative stress, c‐Jun N‐terminal kinase phosphorylation and leucocyte infiltration, and induced insulin resistance. Remarkably, dietary nitrate consumption attenuated and/or mitigated all these responses, including rendering mitochondria more coupled within BAT, and normalizing mitochondrial H2O2 emission and insulin‐mediated Akt‐Thr308 phosphorylation within eWAT. Intriguingly, the positive effects of dietary nitrate appear to be independent of eWAT mitochondrial respiratory capacity and content. Altogether, these data suggest that dietary nitrate attenuates the development of HFD‐induced insulin resistance in association with attenuating WAT inflammation and redox balance, independent of changes in either WAT or BAT mitochondrial respiratory capacity/content.
Key points Ketone bodies are proposed to represent an alternative fuel source driving energy production, particularly during exercise. Biologically, the extent to which mitochondria utilize ketone bodies compared to other substrates remains unknown. We demonstrate in vitro that maximal mitochondrial respiration supported by ketone bodies is low when compared to carbohydrate‐derived substrates in the left ventricle and red gastrocnemius muscle from rodents, and in human skeletal muscle. When considering intramuscular concentrations of ketone bodies and the presence of other carbohydrate and lipid substrates, biological rates of mitochondrial respiration supported by ketone bodies are predicted to be minimal. At the mitochondrial level, it is therefore unlikely that ketone bodies are an important source for energy production in cardiac and skeletal muscle, particularly when other substrates are readily available. Abstract Ketone bodies (KB) have recently gained popularity as an alternative fuel source to support mitochondrial oxidative phosphorylation and enhance exercise performance. However, given the low activity of ketolytic enzymes and potential inhibition from carbohydrate oxidation, it remains unknown if KBs can contribute to energy production. We therefore determined the ability of KBs (sodium dl‐β‐hydroxybutyrate, β‐HB; lithium acetoacetate, AcAc) to stimulate in vitro mitochondrial respiration in the left ventricle (LV) and red gastrocnemius (RG) of rats, and in human vastus lateralis. Compared to pyruvate, the ability of KBs to maximally drive respiration was low in isolated mitochondria and permeabilized fibres (PmFb) from the LV (∼30–35% of pyruvate), RG (∼10–30%), and human vastus lateralis (∼2–10%). In PmFb, the concentration of KBs required to half‐maximally drive respiration (LV: 889 µm β‐HB, 801 µm AcAc; RG: 782 µm β‐HB, 267 µm AcAc) were greater than KB content representative of the muscle microenvironment (∼100 µm). This would predict low rates (∼1–4% of pyruvate) of biological KB‐supported respiration in the LV (8–14 pmol s−1 mg−1) and RG (3–6 pmol s−1 mg−1) at rest and following exercise. Moreover, KBs did not increase respiration in the presence of saturating pyruvate, submaximal pyruvate (100 µm) reduced the ability of physiological β‐HB to drive respiration, and addition of other intracellular substrates (succinate + palmitoylcarnitine) decreased maximal KB‐supported respiration. As a result, product inhibition is likely to limit KB oxidation. Altogether, the ability of KBs to drive mitochondrial respiration is minimal and they are likely to be outcompeted by other substrates, compromising their use as an important energy source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.