[structure: see text] A positively charged tripodal receptor with nitro groups in the imidazolium rings was designed, synthesized, and characterized for its anion binding strength. The receptor shows strong affinity and high selectivity for Cl- through (C-H)+- - -X(-) hydrogen bonds wherein charge-charge and charge-dipole electrostatic interactions dominate. The association constant with chloride anion in a 9:1 mixture of acetonitrile-d3 and DMSO-d6 is measured to be 1.1 x 10(6) M(-1). The receptor also shows reasonably high affinity toward H2PO4-.
Using the computer-aided molecular design approach, we recently reported the synthesis of calix[4]hydroquinone (CHQ) nanotube arrays self-assembled with infinitely long one-dimensional (1-D) short hydrogen bonds (H-bonds) and aromatic-aromatic interactions. Here, we assess various calculation methods employed for both the design of the CHQ nanotubes and the study of their assembly process. Our calculations include ab initio and density functional theories and first principles calculations using ultrasoft pseudopotential plane wave methods. The assembly phenomena predicted prior to the synthesis of the nanotubes and details of the refined structure and electronic properties obtained after the experimental characterization of the nanotube crystal are reported. For better characterization of intriguing 1-D short H-bonds and exemplary displaced pi-pi stacks, the X-ray structures have been further refined with samples grown in different solvent conditions. Since X-ray structures do not contain the positions of H atoms, it is necessary to analyze the system using quantum theoretical calculations. The competition between H-bonding and displaced pi-pi stacking in the assembling process has been clarified. The IR spectroscopic features and NMR chemical shifts of 1-D short H-bonds have been investigated both experimentally and theoretically. The dissection of the two most important interaction components leading to self-assembly processes would help design new functional materials and nanomaterials.
A benzene-based tripodal imidazolium receptor utilizing the strong (C-H)(+)...X(-) hydrogen bonding interaction between imidazolium moieties and halide anions is extensively investigated both theoretically and experimentally. Ab initio calculations predict that this receptor has a very high affinity for fluoride ion (F(-)). The association constant and free energy gain of the N-butyl receptor 2 for F(-) in acetonitrile were measured to be 2.1 x 10(5) M(-1) and -7.25 kcal/mol, respectively, showing that the receptor has a high affinity for F(-) in highly polar organic solvents.
[formula: see text] A new molecular system, 2,11-dithio[4,4]metametaquinocyclophane containing a quinone moiety, was designed and synthesized. As the quinone moiety can readily be converted into an aromatic pi-system (hydroquinone) upon reduction, the nanomechanical molecular cyclophane system exhibits a large flapping motion like a molecular flipper from the electrochemical redox process. The conformational changes upon reduction and oxidation are caused by changes of nonbonding interaction forces (devoid of bond formation/breaking) from the edge-to-face to face-to-face aromatic interactions and vice versa, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.