Recently, eco-friendly energy conversion policies have been being promoted through de-nuclearization and de-coal. For this purpose, a super grid should be built to optimize sustainable renewable energy resources such as solar and wind power. Accordingly, considering the various problems such as technology and cost, a system for efficient energy transmission is required. Hence, research is being actively conducted to apply it, owing to the development of the high voltage direct current (HVDC) system. Among HVDC systems, the cable system is extremely important, in addition to the measurement of the dielectric breakdown strength, space charge, and volume resistivity of insulating materials. The existing resistivity measurement method measures both the volume and surface resistivity using a three-terminal electrode that is used in the international standards of American Society for Testing and Materials (ASTM) D 257 and International Electrotechnical Commission (IEC) 60093. However, the circuit configuration differs depending on the measurement of the volume and surface resistivity; moreover, when a DC voltage is applied to the insulator, a charging current flows and there are multiple samples to be measured, which takes a considerable amount of time. Therefore, in this study, we proposed a new type of resistivity measurement system that is based on the existing three-terminal electrode system. Furthermore, we produced a system capable of simultaneously measuring the volume and surface resistivity. Finally, using this system, we compared and analyzed the volume and surface resistivity of five insulating materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.