Organic-inorganic hybrid perovskite solar cells (PSCs) have been extensively studied because of their outstanding performance: a power conversion efficiency exceeding 22% has been achieved. The most commonly used PSCs consist of CH3NH3PbI3 (MAPbI3) with a hole-selective contact, such as 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spiro-bifluorene (spiro-OMeTAD), for collecting holes. From the perspective of long-term operation of solar cells, the cell performance and constituent layers (MAPbI3, spiro-OMeTAD, etc.) may be influenced by external conditions like temperature, light, etc. Herein, we report the effects of temperature on spiro-OMeTAD and the interface between MAPbI3 and spiro-OMeTAD in a solar cell. It was confirmed that, at high temperatures (85 °C), I− and CH3NH3
+ (MA+) diffused into the spiro-OMeTAD layer in the form of CH3NH3I (MAI). The diffused I− ions prevented oxidation of spiro-OMeTAD, thereby degrading the electrical properties of spiro-OMeTAD. Since ion diffusion can occur during outdoor operation, the structural design of PSCs must be considered to achieve long-term stability.
The effects of exchange
current density, Tafel slope, system resistance,
electrode area, light intensity, and solar cell efficiency were systematically
decoupled at the converter-assisted photovoltaic–water electrolysis
system. This allows key determinants of overall efficiency to be identified.
On the basis of this model, 26.5% single-junction GaAs solar cell
was combined with a membrane-electrode-assembled electrolysis cell
(EC) using the dc/dc converting technology. As a result, we have achieved
a solar-to-hydrogen conversion efficiency of 20.6% on a prototype
scale and demonstrated light intensity tracking optimization to maintain
high efficiency. We believe that this study will provide design principles
for combining solar cells, ECs, and new catalysts and can be generalized
to other solar conversion chemical devices while minimizing their
power loss during the conversion of electrical energy into fuel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.