Chiral photonics deals with enantioselective polarization control of linear and nonlinear optical functions and holds a great promise for a wide range of applications including optical signal processing, biosensing, and chiral bioimaging. Development of chiral materials with optical activity exceeding that of natural materials therefore becomes a prerequisite to realizing the full potential of this field. Herein, we report on a study of structure−property relations of two chiral polymers with ester functional groups in lateral branch. To enhance rotational strength, the macroscopic measure of chirality, we employ a fluorene−quinoxaline motif in the monomer unit. To the best of our knowledge, we find the optical activity of one of the studied polymers to be the highest reported so far. Theoretical calculations reveal a correlation between the topological conformations and the simulated CD spectra in agreement with the experimental measurements and help clarify the mechanism of optical activity enhancement that could create insight for further enhancement of chirality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.