An overview of the Energy Balance Experiment (EBEX-2000) is given. This experiment studied the ability of state-of-the-art measurements to close the surface energy balance over a surface (a vegetative canopy with large evapotranspiration) where closure has been difficult to obtain. A flood-irrigated cotton field over uniform terrain was used, though aerial imagery and direct flux measurements showed that the surface still was inhomogeneous. All major terms of the surface energy balance were measured at nine sites to characterize the spatial variability across the field. Included in these observations was an estimate of heat storage in the plant canopy. The resultant imbalance still was 10%, which exceeds the estimated measurement error. We speculate that horizontal advection in the layer between the canopy top and our flux measurement height may cause this imbalance, though our estimates of
A comprehensive 30×30 arc‐second resolution gridded soil characteristics data set of China has been developed for use in the land surface modeling. It includes physical and chemical attributes of soils derived from 8979 soil profiles and the Soil Map of China (1:1,000,000). We used the polygon linkage method to derive the spatial distribution of soil properties. The profile attribute database and soil map are linked under the framework of the Genetic Soil Classification of China which avoids uncertainty in taxon referencing. Quality control information (i.e., sample size, soil classification level, linkage level, search radius and texture) is included to provide “confidence” information for the derived soil parameters. The data set includes 28 attributes for 8 vertical layers at the spatial resolution of 30×30 arc‐seconds. Based on this data set, the estimated storage of soil organic carbon in the upper 1 m of soil is 72.5 Pg, total N is 6.6 Pg, total P is 4.5 Pg, total K is 169.9 Pg, alkali‐hydrolysable N is 0.55 Pg, available P is 0.03 Pg, and available K is 0.61 Pg. These estimates are reasonable compared with previous studies. The distributions of soil properties are consistent with common knowledge of Chinese soil scientists and the spatial variations over large areas are well represented. The data set can be incorporated into land models to better represent the role of soils in hydrological and biogeochemical cycles in China.
Developing rapid and diverse microbial mutation tool is of importance to strain modification. In this review, a new mutagenesis method for microbial mutation breeding using the radio-frequency atmospheric-pressure glow discharge (RF APGD) plasma jets is summarized. Based on the experimental study, the helium RF APGD plasma jet has been found to be able to change the DNA sequences significantly, indicating that the RF APGD plasma jet would be a powerful tool for the microbial mutagenesis with its outstanding features, such as the low and controllable gas temperatures, abundant chemically reactive species, rapid mutation, high operation flexibility, etc. Then, with the RF APGD plasma generator as the core component, a mutation machine named as atmospheric and room temperature plasma (ARTP) mutation system has been developed and successfully employed for the mutation breeding of more than 40 kinds of microorganisms including bacteria, fungi, and microalgae. Finally, the prospect of the ARTP mutagenesis is discussed.
[1] Understanding links between the disturbance regime and regional climate in boreal regions requires observations of the surface energy budget from ecosystems in various stages of secondary succession. While several studies have characterized fire-induced differences in surface energy fluxes from boreal ecosystems during summer months, much less is known about these differences over the full annual cycle. Here we measured components of the surface energy budget (including both radiative and turbulent fluxes) at three sites from a fire chronosequence in interior Alaska for a 1-year period. Our sites consisted of large burn scars resulting from fires in 1999, 1987, and $1920 (hereinafter referred to as the 3-, 15-, and 80-year sites, respectively). Vegetation cover consisted primarily of bunch grasses at the 3-year site, aspen and willow at the 15-year site, and black spruce at the 80-year site. Annual net radiation declined by 31% (17 W m À2 ) for both the 3-and the 15-year sites as compared with the 80-year site (which had an annual mean of 55 W m À2 ). Annual sensible heat fluxes were reduced by an even greater amount, by 55% at the 3-year site and by 52% at the 15-year site as compared with the 80-year site (which had an annual mean of 21 W m À2 ). Absolute differences between the postfire ecosystems and the mature black spruce forest for both net radiation and sensible heat fluxes were greatest during spring (because of differences in snow cover and surface albedo), substantial during summer and winter, and relatively small during fall. Fire-induced disturbance also initially reduced annual evapotranspiration (ET). Annual ET decreased by 33% (99 mm yr À1 ) at the 3-year site as compared with the 80-year site (which had an annual flux of 301 mm yr À1 ). Annual ET at the 15-year site (283 mm yr À1 ) was approximately the same as that from the 80-year site, even though the 15-year site had substantially higher ET during July. Our study suggests that differences in annual ET between deciduous and conifer stands may be smaller than that inferred solely from summer observations. This study provides a direct means to validate land surface processes in global climate models attempting to capture vegetation-climate feedbacks in northern terrestrial regions.Citation: Liu, H., J. T. Randerson, J. Lindfors, and F. S. Chapin III (2005), Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: An annual perspective,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.