Photocrosslinkable polymers such as gelatin methacrylate (GelMA) have various 3D bioprinting applications. These polymers crosslink upon exposure to UV irradiation with the existence of an appropriate photoinitiator. Two photoinitiators, Irgacure 2959 and lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) are commonly used. This study systematically investigates the effects of photoinitiator types on the cell viability, physical properties, and microstructure in 3D bioprinting of GelMA-based cellular constructs. The main conclusions are: (1) during the 3D bioprinting, the cell viability generally decreases as the photoinitiator concentration and printing time increase using both Irgacure 2959 and LAP. At the low photoinitiator concentrations (such as 0.3% and 0.5% (w/v)), the overall cell viability is good within the printing time of 60 min using both Irgacure 2959 and LAP. However, at the high photoinitiator concentrations (such as 0.7% and 0.9% (w/v)), the overall cell viability using LAP is much higher than that using Irgacure 2959 within the printing time of 60 min; (2) after the 3D bioprinting, the photoinitiator types, either Irgacure 2959 or LAP, have negligible effects on the post-printing cell viability after crosslinking; (3) after the 3D bioprinting, GelMA samples cured with Irgacure 2959 have slightly larger pore size, faster degradation rate, and greater swelling ratio compared to those cured with LAP; (4) 3D GelMA-based vascular-like constructs have been fabricated using dynamic optical projection stereolithography, and the measured dimensions have been compared with the designed dimensions showing good shape fidelity.
Three-dimensional (3D) bioprinting fabricates 3D functional tissues/organs by accurately depositing the bioink composed of the biological materials and living cells. Even though 3D bioprinting techniques have experienced significant advancement over the past decades, it remains challenging for 3D bioprinting to artificially fabricate functional tissues/organs with high post-printing cell viability and functionality since cells endure various types of stress during the bioprinting process. Generally, cell viability which is affected by several factors including the stress and the environmental factors, such as pH and temperature, is mainly determined by the magnitude and duration of the stress imposed on the cells with poorer cell viability under a higher stress and a longer duration condition. The maintenance of high cell viability especially for those vulnerable cells, such as stem cells which are more sensitive to multiple stresses, is a key initial step to ensure the functionality of the artificial tissues/organs. In addition, maintaining the pluripotency of the cells such as proliferation and differentiation abilities is also essential for the 3D-bioprinted tissues/organs to be similar to native tissues/organs. This review discusses various pathways triggering cell damage and the major factors affecting cell viability during different bioprinting processes, summarizes the studies on cell viabilities and functionalities in different bioprinting processes, and presents several potential approaches to protect cells from injuries to ensure high cell viability and functionality.
3D bioprinting utilizes a cell-laden bioink to fabricate 3D cellular constructs for a variety of biomedical applications. The printing process typically takes hours to fabricate heterogeneous artificial tissues with multiple types of cells, different types of extracellular matrices, and interconnected vascular networks. During the printing process, the suspended cells sediment within the bioink with time, resulting in inhomogeneous cell concentration, which significantly affects the printing reliability and accuracy. This paper is the first study to quantify the cell sedimentation process in the bioink containing living cells. In this study, the effects of polymer concentration and standing time on the cell sedimentation velocity and cell concentration have been systematically investigated. The main conclusions are (1) the cell sedimentation velocity is almost constant at different standing times, because the cell gravitational force is balanced by the cell buoyant force and the drag force; (2) with the increase of the polymer concentration, the cell sedimentation velocity decreases, while the cell mass density increases due to less water absorbed; (3) with the increase of the standing time, the cell concentration near the bottom of the bioink reservoir increases linearly. With the increase of the polymer concentration, this linear increase of the cell concentration with the standing time significantly slows down due to a significant decrease of the cell sedimentation velocity; and (4) for the bioink with a low sodium alginate concentration, cell concentration near the bottom of the bioink reservoir is not uniform, and cell aggregates are observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.