Edited by Tamas DalmayKeywords: MiR-199a-5p DRAM1 Beclin1 Autophagy Irradiation a b s t r a c t Autophagy is a self-degrading process that is triggered by diverse stimuli including ionizing radiation. In this study we show novel phenomena in which transfection of miR-199a-5p mimic significantly suppresses IR-induced autophagy in MCF7 cells, and up-regulates basal and IR-induced autophagy in MDA-MB-231 breast cancer cells. We also identify DRAM1 and Beclin1 as novel target genes for miR-199a-5p. Overexpression of miR-199a-5p inhibits DRAM1 and Beclin1 expression in MCF7 cells, while it enhances expression of these genes in MDA-MB-231 cells. Furthermore, we show that miR-199a-5p sensitizes MDA-MB-231 cells to irradiation. Therefore, our data identify miR-199a-5p as a novel and unique regulator of autophagy, which plays an important role in cancer biology and cancer therapy.
Autophagy is an evolutionarily conserved, multi-step lysosomal degradation process in which a cell degrades its own long-lived proteins and damaged organelles. Ataxia telangiectasia mutated (ATM) has recently been shown to upregulate the process of autophagy. Previous studies showed that certain microRNAs, including miR-18a, potentially regulate ATM in cancer cells. However, the mechanisms behind the modulation of ATM by miR-18a remain to be elucidated in colon cancer cells. In the present study, we explored the impact of miR-18a on the autophagy process and ATM expression in HCT116 colon cancer cells. To determine whether a preliminary link exists between autophagy and miR-18a, HCT116 cells were irradiated and quantitative (q) PCR was performed to measure miR-18a expression. HCT116 cells were transfected with an miR-18a mimic to study its impact on indicators of autophagy. Western blotting and luciferase assays were implemented to explore the impact of miR-18a on ATM gene expression in HCT116 cells. The results showed that miR-18a expression was strongly stimulated by radiation. Ectopic overexpression of miR-18a in HCT116 cell lines potently enhanced autophagy and ionizing radiation-induced autophagy. Moreover, miR-18a overexpression led to the upregulation of ATM expression and suppression of mTORC1 activity. Results of the present study pertaining to the role of miR-18a in regulating autophagy and ATM gene expression in colon cancer cells revealed a novel function for miR-18a in a critical cellular event and on a crucial gene with significant impacts in cancer development, progression, treatment and in other diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.