The cytotoxicity of the natural ent-kaurene diterpenoid, oridonin, has been extensively studied. However, the application of oridonin for cancer therapy was hampered primarily by its moderate potency. In this study, a series of oridonin A-ring modified analogues, and their derivatives bearing various substituents on 14-OH position, were designed, synthesized, and evaluated for anticancer efficacy. Some of the derivatives were significantly more potent than oridonin against both drug-sensitive and drug-resistant cancer cells. The most potent compound, 13p, was 200-fold more efficacious than oridonin in MCF-7 cancer cells. Furthermore, 13p induced apoptosis and cell cycle arrest at the G2/M phase. A decrease in mitochondrial membrane potential and an increase in Bax/Bcl-2 ratio, accompanied by activated caspase-3 cleavage, were observed in MCF-7 cells after treatment with 13p, suggesting that the mitochondrial pathway was involved in the 13p-mediated apoptosis. Moreover, 13p significantly inhibited tumor growth in mouse xenograft models and had no observable toxic effect.
An efficient construction of fused indolines with a 2-quaternary center through a palladium-catalyzed intramolecular Heck reaction of N-(2(2-halobenzoxyl)-2,3-disubstituted indoles is disclosed. This protocol provided a straightforward access to diverse fused indolines with good functional group tolerance.
A series of novel quinoline-chalcone derivatives were designed, synthesized and evaluated for their antiproliferative activity. Among them, compound 24d exhibited the most potent activity with IC50 values ranging from 0.009 to 0.016 μM in a panel of cancer cell lines. Compound 24d also displayed a good safety profile with LD50 value of 665.62 mg/kg by intravenous injection, and its hydrochloride salt 24d-HCl significantly inhibited tumor growth in H22 xenograft models without observable toxic effects, which was more potent than that of CA-4. Mechanism studies demonstrated that 24d bound to the colchicine site of tubulin, arrested cell cycle at the G2/M phase, induced apoptosis, depolarized mitochondria and induced reactive oxidative stress (ROS) generation in K562 cells. Moreover, 24d has potent in vitro anti-metastasis, in vitro and in vivo anti-vascular activities. Collectively, our findings suggest that 24d deserves to be further investigated as a potent and safe anti-tumor agent for cancer therapy.
A Rh(III)-catalyzed annulation between salicylaldehydes and diazo compounds with controllable chemoselectivity is described. AgNTf favored benzofurans via a tandem C-H activation/decarbonylation/annulation process, while AcOH led to chromones through a C-H activation/annulation pathway. The reaction exhibited good functional group tolerance and scalability. Moreover, only a single regioisomer of benzofuran was obtained due to the in situ decarbonylation orientation effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.