This paper presents the design of a sliding mode controller for networked control systems subject to successive Markovian packet dropouts. This paper adopts the Gilbert-Elliott channel model to describe the temporal correlation among packet losses, and proposes an update scheme to select the assumed available states for use in a sliding mode control law. A technique used in the theory of discrete-time Markov jump linear systems is applied to tackle the effect of the packet losses. This involves introducing a couple of Lyapunov functions dependent on the indicator functions of the instantaneous packet loss, and proving that the sliding mode controller is able to drive the system state trajectories into the neighborhood of the designed integral sliding surface in mean-square sense given that the corresponding Lyapunov inequalities are satisfied. The system is guaranteed thereafter to remain inside the neighborhood of the sliding surface. Simulated case studies are presented to illustrate the effectiveness of the control law.
The anti-reflection film can effectively reduce the surface reflectivity of solar photovoltaics, increase the transmittance of light, and improve the photoelectric conversion efficiency. The high refractive index coating is an important part of the anti-reflection film. However, the traditional metal oxide coating has poor stability and complicated processes. To address this issue, we prepared two organic high refractive index (HRI) photopolymers by modifying epoxy acrylic acid with 4,4′-thiodibenzenethiol, which can be surface patterned by nanoimprinting to prepare antireflection coatings. As a result, two modified photopolymers with high refractive index (n > 1.63), high optical transmittance (T > 95%), and thermal stability (Tg > 100 °C) are obtained after curing. In particular, the diphenyl sulfide photopolymer modified by ethyl isocyanate acrylate has a refractive index up to 1.667 cured by UV light. Our work confirms that the organic HRI photopolymer can be obtained by introducing high molar refractive index groups, with potential to be applied as a PV cell power conversion efficiency material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.