The spinosyns are a large family of unprecedented compounds produced from fermentation of two species of Saccharopolyspora. Their core structure is a polyketide-derived tetracyclic macrolide appended with two saccharides. They show potent insecticidal activities against many commercially significant species that cause extensive damage to crops and other plants. They also show activity against important external parasites of livestock, companion animals and humans. Spinosad is a defined combination of the two principal fermentation factors, spinosyns A and D. Structure-activity relationships (SARs) have been extensively studied, leading to development of a semisynthetic second-generation derivative, spinetoram. The spinosyns have a unique mechanism of action (MOA) involving disruption of nicotinic acetylcholine receptors. When compared with many other insecticides, the spinosyns generally show greater selectivity toward target insects and lesser activity against many beneficial predators as well as mammals and other aquatic and avian animals. Their insecticidal spectrum, unique MOA and lower environmental effect make them useful new agents for modern integrated pest management programs. As a result, this work has received U S Presidential Green Chemistry Challenge Awards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.