Clinical and experimental studies suggest that angiogenesis is a prerequisite for solid tumour growth. Several growth factors with mitogenic or chemotactic activity for endothelial cells in vitro have been described, but it is not known whether these mediate tumour vascularization in vivo. Glioblastoma, the most common and most malignant brain tumour in humans, is distinguished from astrocytoma by the presence of necroses and vascular proliferations. Here we show that expression of an endothelial cell-specific mitogen, vascular endothelial growth factor (VEGF), is induced in astrocytoma cells but is dramatically upregulated in two apparently different subsets of glioblastoma cells. The high-affinity tyrosine kinase receptor for VEGF, flt, although not expressed in normal brain endothelium, is upregulated in tumour endothelial cells in vivo. These observations strongly support the concept that tumour angiogenesis is regulated by paracrine mechanisms and identify VEGF as a potential tumour angiogenesis factor in vivo.
Treatment of human monocytes with vascular endothelial growth factor (VEGF) isolated from tumor cell supernatants was reported to induce monocyte activation and migration. In this study we show that recombinant human VEGF165, and VEGF121 had a maximal effect on human monocyte migration at 65 to 250 pmol/L. Chemotactic activity of VEGF165 was inhibited by a specific antiserum against VEGF, by heat treatment of VEGF165, and by protein kinase inhibitors. In addition, we could show that VEGF-stimulated monocyte migration is mediated by a pertussis toxin-sensitive GTP-binding protein. Placenta growth factor (PlGF152), a heparin-binding growth factor related to VEGF, was also chemotactic for monocytes at concentrations between 2.5 and 25 pmol/L. In accordance with these findings, human monocytes showed specific and saturable binding for 125I-VEGF165 (half-maximal binding at 1 to 1.5 nmol/L). Using Northern blot analysis, we further could show that human monocytes express only the gene for the VEGF receptor type, flt-1, but not for the second known VEGF receptor, KDR. Resting monocytes expressed low levels of flt-1 gene only. Brief exposure (2 to 4 hours) of human monocytes to lipopolysaccharide, a prototypic monocyte activator, led to a significant upregulation of the flt-1 mRNA level. The results presented here suggest that monocyte chemotaxis in response to VEGF and most likely to PlGF152 is mediated by flt-1 and thus show a possible function for the VEGF-receptor flt-1.
Recently , monoclonal antibodies against the human vascular endothelial growth factor receptor VEGFR-3 were shown to provide a specific antigenic marker for lymphatic endothelium in various normal tissues. In this study we have investigated the expression of VEGFR-3 and its ligand VEGF-C in normal breast tissue and in breast tumors by immunohistochemistry. VEGFR-3 was weakly expressed in capillaries of normal breast tissue and in fibroadenomas. In intraductal breast carcinomas , VEGFR-3 was prominent in the "necklace" vessels adjacent to the basal lamina of the tumor-filled ducts. VEGF receptor 1 and 2 as well as blood vessel endothelial and basal lamina markers were colocalized with VEGFR-3 in many of these vessels. Antibodies against smooth muscle ␣-actin gave a weak staining of the necklace vessels , suggesting that they were incompletely covered by pericytes/smooth muscle cells. A highly elevated number of VEGFR-3 positive vessels was found in invasive breast cancer in comparison with histologically normal breast tissue (P < 0.0001 , the Mann-Whitney test). VEGF-C was located in the cytoplasm of intraductal and invasive cancer cells. The results demonstrate that the expression of VEGFR-3 becomes up-regulated in the endothelium of angiogenic blood vessels in breast cancer. The results also suggest that VEGF-C secreted by the intraductal carcinoma cells acts predominantly as an angiogenic growth factor for blood vessels , although this paracrine signaling network between the cancer cells and the endothelium may also be involved in modifying the permeabilities of both blood and lymphatic vessels and metastasis formation. (Am J Pathol 1999, 154:1381-1390)
Disruption of the precise balance of positive and negative molecular regulators of blood and lymphatic vessels can lead to myriad diseases that affect one in four people worldwide. Although dozens of natural inhibitors of hemangiogenesis have been identified, an endogenous selective inhibitor of lymphatic vessels has not yet been described. We report the existence of a secreted, splice variant of vascular endothelial growth factor receptor-2 (sVegfr-2) that inhibits developmental and reparative lymphangiogenesis by blocking Vegf-c. Tissue-specific loss of sVegfr-2 in mice induced, at birth, spontaneous lymphatic invasion of the normally alymphatic cornea and hyperplasia of skin lymphatics without accompanying changes in blood vasculature. sVegfr-2 inhibited lymphangiogenesis but not hemangiogenesis induced by corneal suture injury or transplantation, enhanced corneal allograft survival, and suppressed lymphangioma cellular proliferation. Naturally occurring sVegfr-2 is a molecular uncoupler of blood and lymphatic vessels whose modulation might have a therapeutic role in lymphatic vascular malformations, transplantation, and potentially in tumor lymphangiogenesis and lymphedema.
The lymphangiogenic potency of endothelial growth factors has not been studied to date. This is partially due to the lack of in vivo lymphangiogenesis assays. We have studied the lymphatics of differentiated avian chorioallantoic membrane (CAM) using microinjection of Mercox resin, semi- and ultrathin sectioning, immunohistochemical detection of fibronectin and alpha-smooth muscle actin, and in situ hybridization with VEGFR-2 and VEGFR-3 probes. CAM is drained by lymphatic vessels which are arranged in a regular pattern. Arterioles and arteries are accompanied by a pair of interconnected lymphatics and form a plexus around bigger arteries. Veins are also associated with lymphatics, particularly larger veins, which are surrounded by a lymphatic plexus. The lymphatics are characterized by an extremely thin endothelial lining, pores, and the absence of a basal lamina. Patches of the extracellular matrix can be stained with an antibody against fibronectin. Lymphatic endothelial cells of differentiated CAM show ultrastructural features of this cell type. CAM lymphatics do not possess mediae. In contrast, the lymphatic trunks of the umbilical stalk are invested by a single but discontinuous layer of smooth muscle cells. CAM lymphatics express VEGFR-2 and VEGFR-3. Both the regular pattern and the typical structure of these lymphatics suggest that CAM is a suitable site to study the in vivo effects of potential lymphangiogenic factors. We have studied the effects of VEGF homo- and heterodimers, VEGF/PlGF heterodimers, and PlGF and VEGF-C homodimers on Day 13 CAM. All the growth factors containing at least one VEGF chain are angiogenic but do not induce lymphangiogenesis. PlGF-1 and PlGF-2 are neither angiogenic nor lymphangiogenic. VEGF-C is the first lymphangiogenic factor and seems to be highly chemoattractive for lymphatic endothelial cells. It induces proliferation of lymphatic endothelial cells and development of new lymphatic sinuses which are directed immediately beneath the chorionic epithelium. Our studies show that VEGF and VEGF-C are specific angiogenic and lymphangiogenic growth factors, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.