A method is proposed and demonstrated for the direct determination of conformational disorder (trans-gauche isomerization) as a function of acyl-chain position in phospholipid bilayer membranes. Three specifically deuterated derivatives of dipalmitoylphosphatidylcholine (DPPC), namely 4,4,4',4'-d4-DPPC (4-d4-DPPC), 6,6,6',6'-d4-DPPC (6-d4-DPPC), and 10,10,10',10'-d4-DPPC (10-d4-DPPC), have been synthesized. The CD2 rocking modes in the Fourier transform infrared (FT-IR) spectrum have been monitored as a function of temperature for each derivative. A method originally applied by Snyder and Poore [(1973) Macromolecules 6, 708-715] as a specific probe of hydrocarbon chain conformation in alkanes has been used to analyze the data. The rocking modes appear at 622 cm-1 for a CD2 segment surrounded by a trans C-C-C skeleton and between 645 and 655 cm-1 for segments surrounded by particular gauche conformers. The integrated band intensities of these modes have been used to monitor trans-gauche isomerization in the acyl chains at particular depths in the bilayer. At 48 degrees C, above the gel-liquid-crystal phase transition, the percentage of gauche rotamers present is 20.7 +/- 4.2, 32.3 +/- 2.3, and 19.7 +/- 0.8 for 4-d4-DPPC, 6-d4-DPPC, and 10-d4-DPPC, respectively. The gel phase of the latter two molecules is highly ordered. In contrast, a substantial population of gauche rotamers was observed for the 4-d4-DPPC. The conformational analysis yields a range of 3.6-4.2 gauche rotamers/acyl chain of DPPC above the phase transition. This range is in excellent accord with the dilatometric data of Nagle and Wilkinson [(1978) Biophys. J. 23, 159-175]. The significant advantages of the FT-IR approach are discussed.
A method originally proposed by Snyder and Poore [(1973) Macromolecules 6, 708-715] as a specific probe of trans-gauche isomerization in hydrocarbon chains and recently applied [Mendelsohn et al. (1989) Biochemistry 28, 8934-8939] to the quantitative determination of phospholipid acyl chain conformational order is utilized to monitor the effects of cholesterol at various depths in dipalmitoylphosphatidylcholine (DPPC) bilayers. The method is based on the observation that the CD2 rocking modes from the acyl chains of specifically deuterated phospholipids occur at frequencies in the Fourier transform infrared spectrum which depend upon the local geometry (trans or gauche) of the C-C-C skeleton surrounding a central CD2 group. Three specifically deuterated derivatives of DPPC, namely, 4,4,4',4'-d4 DPPC (4-d4 DPPC), 6,6,6',6'-d4 DPPC (6-d4 DPPC), and 12,12,12',12'-d4 DPPC (12-d4 DPPC), have been synthesized, and the effects of cholesterol addition at 2:1 DPPC/cholesterol (mol:mol) on acyl chain order at various temperatures have been determined. At 48 degrees C, cholesterol inhibits gauche rotamer formation by factors of approximately 9 and approximately 6 at positions 6 and 4, respectively, of the acyl chains, thus demonstrating a strong ordering effect in regions of the bilayer where the sterol rings are presumed to insert parallel to the DPPC acyl chains. In contrast, the ability of the sterol to order the acyl chains is much reduced at the 12-position. The sterol demonstrates only a slight disordering of phospholipid gel phases. Finally, the contributions of different classes of gauche conformers to the spectra have been determined.(ABSTRACT TRUNCATED AT 250 WORDS)
Type 2 diabetes is a polygenic disease which afflicts nearly 200 million people worldwide and is expected to increase to near epidemic levels over the next 10-15 years. Glucokinase (GK) activators are currently under investigation by a number of pharmaceutical companies with only a few reaching early clinical evaluation. A GK activator has the promise of potentially affecting both the beta-cells of the pancreas, by improving glucose sensitive insulin secretion, as well as the liver, by reducing uncontrolled glucose output and restoring post-prandial glucose uptake and storage as glycogen. Herein, we report our efforts on a sulfonamide chemotype with the aim to generate liver selective GK activators which culminated in the discovery of 3-cyclopentyl-N-(5-methoxy-thiazolo[5,4-b]pyridin-2-yl)-2-[4-(4-methyl-piperazine-1-sulfonyl)-phenyl]-propionamide (17c). This compound activated the GK enzyme (alphaK(a) = 39 nM) in vitro at low nanomolar concentrations and significantly reduced glucose levels during an oral glucose tolerance test in normal mice.
This article provides evidence of a new class of compounds, 1,3-diaryl-[1H]-pyrazole-4-acetamides, initially identified from their ability to increase glucose transport in an adipocyte and muscle cell line and ultimately demonstrating dramatic glucose lowering in ob/ob mice, a diabetic animal model. The lead compound, 1, possessed some behavioral-like effects which were removed by structural variation during the course of this investigation. Specifically, 11g (R1 = meta-CF(3), Ar2 = 4'biphenyl, R3 = diethylamide) illustrated the potency of this series with ED(50) values for glucose lowering in ob/ob mice of 3.0 mg/kg/day. Concomitant with its effect on glucose lowering, 11g also caused a 50% reduction in insulin levels consistent with an agent that increases whole body insulin sensitivity. 11g showed favorable pharmacokinetic data with acceptable absorption, negligible metabolism, and good duration of action. 11g demonstrated no appreciable adipogenic effect through PPAR gamma agonism, a characteristic of the thiazolidinediones (TZD), and so represents a potentially new class of agents for the treatment of diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.