Wastewater contains different kinds of contaminants, including antibiotics and bacterial isolates with human-generated antibiotic resistances. In industrialized countries most of the wastewater is processed in wastewater treatment plants which do not only include commercial wastewater, but also wastewater from hospitals. Three multiresistant pathogens—extended spectrum β-lactamase (ESBL)-harbouring Enterobacteriaceae (Gram negative bacilli), methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococci (VRE)—were chosen for screening in a state of the art wastewater treatment plant in Austria. Over an investigation period of six months all three multiresistant pathogens could be isolated from activated sludge. ESBL was the most common resistance mechanism, which was found in different species of Enterobacteriaceae, and in one Aeromonas spp. Sequencing of ESBL genes revealed the dominance of genes encoding members of CTX-M β-lactamases family and a gene encoding for PER-1 ESBL was detected for the first time in Austria. MRSA and VRE could be isolated sporadically, including one EMRSA-15 isolate. Whereas ESBL is well documented as a surface water contaminant, reports of MRSA and VRE are rare. The results of this study show that these three multiresistant phenotypes were present in activated sludge, as well as species and genes which were not reported before in the region. The ESBL-harbouring Gram negative bacilli were most common.
For some time now, antibiotic-resistant bacterial strains have been found in the human population, in foods, in livestock and wild animals, as well as in surface waters. The entry of antibiotics and resistant bacterial strains into the environment plays an important role in the spread of antibiotic resistance. The goal of the present study was to monitor the entry of antibiotic resistances into the environment through the contamination of wastewater. To assess the extent of transmission of antibiotic resistances from human sources into the environment, the resistance patterns of Escherichia coli strains isolated from human patients have been compared to those found in strains isolated from sewage sludge. Our results may indicate if resistances to particular antibiotics are more prone than others to spread into the environment. To monitor the increase of specific resistances over time, samples taken in the years 2000 and 2009 were analysed. Our study shows that for some antibiotics a parallel development of resistance patterns has taken place in both patient and environmental samples over time. For other sets of antibiotics, independent developments have occurred in the samples. A clear increase of multi-resistant E. coli strains over time was observed in samples from both sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.