Spectra were taken that describes free water, ice, and snow, and vegetation and inorganic backgrounds. The reflectance of water films, ranging from 0.008 to 5.35mm, on a spectralon background varied with water depth and the water transmittance and absorbtance properties. Thin water films, >3.5mm, quenched the short wave infrared (SWIR) reflectance, even though moderate visible-near infrared reflectance occurred from the water-spectralon surfaces. Ice and snow have a similar number of absorption bands as water but their absorption maxima varied from those of water. River float-ice and glacial ice have diagnostic absorption features at 1 .02 and 1 .25jtm and negligible reflectance in the >1 .33jm region. New powder snow, new wet snow, and older deep snow packs have similar shaped reflectance spectra. Thin snow accumulations readily masked the underlying surfaces. These snow pack surfaces have a small asymmetric absorption features at O.9Ojtm and strong asymmetric absorption features at 1 .02, 1 .25 , and 1 .5Om. These snow packs have measurable SWIR reflectance. An avalanche snow pack had low SWIR reflectance, which was similar to ice spectra. Water, ice and snow and ice surfaces have spectrally distinct features, which differentiates them and the background surfaces.
Spectral infrared emissivity measurements have been made of a variety of materials both with and without surface water. The surface water was either natural, in the form of dew or residual rainwater, or artificially introduced by manual wetting. Materials naturally high in water content were also measured. Despite the rather diverse spectral population of the underlying materials, they exhibited very similar, featureless, water-like spectra; spectrally flat with a very high magnitude across the emissive infrared region. The implication to exploitation personnel that may use emissive infrared hyperspectral image data is that in areas where condensation is likely (e.g. high humidity) or in areas populated with high water content background materials (e.g. highly vegetated areas), discrimination may prove an intractable problem with hyperspectral infrared sensing for ambient temperature targets. A target that exhibits a temperature either below or above ambient temperature may be detectable, but not identified, and may be more economically pursued with a far simpler, single-band midwave or longwave sensor.
Spectroscopic measurements of infrared CO2 transitions in gas plumes are reported, and evaluated for their potential to yield a reliable remote sensing technique for determination of plume temperature. Measurements were made on two types of plumes: a sideways-directed plume from a vehicle exhaust, and a stack plume from a propane-burning portable plume generator. Modeling of CO2 emission near 4.25 tm from the portable plume generator does not yield a temperature diagnostic due to heavy and unpredictable atmospheric absorption. The 4.25 jim band is optically thick in the vehicle exhaust plume measurements. For the vehicle plume, the blackbody Planck equation is used to derive temperatures that agree with results of thermocouple measurements. The ratio of optically thin signals obtained in the vicinity of the 4.25 im and 14.4 im transitions is related to temperature in accordance with Boltzmann statistics. For these experimental conditions, the ratio calculated from the Boltzmann distribution has similar temperature dependence to the ratio obtained from the blackbody Planck equation. Because the ratio of signals obtained at two optically thin wavelengths is independent of concentration, this technique has promise for field measurement of plume temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.