Cellular systems contain as much as millimolar concentrations of both ascorbate and GSH, although the GSH concentration is often 10-fold that of ascorbate. It has been proposed that GSH and superoxide dismutase (SOD) act in a concerted effort to eliminate biologically generated radicals. The tyrosyl radical (Tyr ⅐ ) generated by horseradish peroxidase in the presence of hydrogen peroxide can react with GSH to form the glutathione thiyl radical (GS ⅐ ). GS ⅐ can react with the glutathione anion (GS ؊ ) to form the disulfide radical anion (GSSG . ). This highly reactive disulfide radical anion will reduce molecular oxygen, forming superoxide and glutathione disulfide (GSSG). In a concerted effort, SOD will catalyze the dismutation of superoxide, resulting in the elimination of the radical. The physiological relevance of this GSH/SOD concerted effort is questionable. In a tyrosyl radical-generating system containing ascorbate (100 M) and GSH (8 mM), the ascorbate nearly eliminated oxygen consumption and diminished GS ⅐ formation. In the presence of ascorbate, the tyrosyl radical will oxidize ascorbate to form the ascorbate radical. When measuring the ascorbate radical directly using fast-flow electron spin resonance, only minor changes in the ascorbate radical electron spin resonance signal intensity occurred in the presence of GSH. These results indicate that in the presence of physiological concentrations of ascorbate and GSH, GSH is not involved in the detoxification pathway of oxidizing free radicals formed by peroxidases.
Electron spin resonance (ESR) spectroscopy and oxygen consumption measurements using a Clark-type oxygen electrode have been used to study the metabolism of the estrogen 17 beta-estradiol by lactoperoxidase. Evidence for a one-electron oxidation of estradiol to its reactive phenoxyl radical intermediate is presented. The phenoxyl radical metabolite abstracts hydrogen from reduced glutathione generating the glutathione thiyl radical, which is spin trapped by 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and subsequently detected by ESR spectroscopy. In the absence of DMPO, molecular oxygen is consumed by a sequence of reactions initiated by the glutathione thiyl radical. Similarly, the estradiol phenoxyl radical abstracts hydrogen from reduced beta-nicotinamide-adenine dinucleotide (NADH) to generate the NAD. radical. The NAD. radical is not spin trapped by DMPO, but instead reduces molecular oxygen to the superoxide radical, which is then spin-trapped by DMPO. The superoxide generated may either spontaneously dismutate to form hydrogen peroxide or react with another NADH to form NAD., thus propagating a chain reaction leading to oxygen consumption and hydrogen peroxide accumulation. Ascorbate inhibits oxygen consumption when estradiol is metabolized in the presence of either glutathione or NADH by reducing radical intermediates back to their parent molecules and forming the relatively stable ascorbate radical. These results demonstrate that the futile metabolism of micromolar quantities of estradiol catalyzes the oxidation of much greater concentrations of biochemical reducing cofactors, such as glutathione and NADH, with hydrogen peroxide produced as a consequence. The accumulation of intracellular hydrogen peroxide could explain the hydroxyl radical-induced DNA base lesions recently reported for female breast cancer tissue.
Fast-flow electron spin resonance (ESR) spectroscopy has been used to detect a free radical formed from the reaction of L-tryptophan with Ce 4+ in an acidic aqueous environment. Computer simulations of the ESR spectra from L-tryptophan and several isotopically modified forms strongly support the conclusion that the L-tryptophan radical cation has been detected by ESR for the first time. The hyperfine coupling constants (HFCs) determined from the well-resolved isotropic ESR spectra support experimental and computational efforts to understand L-tryptophan's role in protein catalysis of oxidation-reduction processes. L-tryptophan HFCs facilitated the simulation of fast-flow ESR spectra of free radicals from two related compounds, tryptamine and 3-methylindole. Analysis of these three compounds' β-methylene hydrogen HFC data along with equivalent L-tyrosine data has led to a new computational method that can distinguish between these two amino acid free radicals in proteins without dependence on isotope labeling, electron nuclear double resonance or high-field ESR. This approach also produces geometric parameters (dihedral angles for the β-methylene hydrogens) which should facilitate protein site assignment of observed L-tryptophan radicals as has been done for L-tyrosine radicals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.