Bus Rapid Transit (BRT) is growing in popularity throughout the world. The reasons for this phenomenon include its passenger and developer attractiveness
Several findings call into question current practices. The chief conclusion is that the accuracy of freight generation (FG) and freight trip generation (FTG) models depends on the consistency between the model's structure and actual FG-FTG patterns, the degree of internal heterogeneity of the economic and land use aggregation used to estimate the model, and the appropriateness of the spatial aggregation procedure used to obtain the desired FG-FTG estimates. Relative to model structure, the paper establishes strong reasons to treat FG and FTG as separate concepts, because the latter is the output of logistic decisions, whereas the former is determined by the economics of production and consumption. The connection between business size variables–for example, employment–and FG is relatively strong because they are economic input factors, whereas the one with FTG is weaker because inventory and transportation costs come into play. Thus it is generally not correct to assume proportionality between FTG and business size or to assume that using constant FTG rates could be problematic. For instance, only 18% of the industry sectors in New York City exhibit constant FTG rates per employee. For economic and land use aggregation, the finer the level of detail the better, as independent variables have a better chance to explain FG-FTG. In the case of spatial aggregation, the correct aggregation procedure depends on the underlying disaggregate model. For a FG-FTG model to work well, both economic and land use and spatial aggregations must be appropriate.
Bus rapid transit systems have grown in popularity in recent years. Spurred by federal initiatives, the spiraling cost of rail transit, and market realities, a growing number of cities have installed or are planning bus rapid transit (BRT). There is a synthesis of current experience, drawing on ongoing research conducted in a project for TCRP. The nature of BRT is described; where it operates; key features, such as running ways, stations, vehicles, intelligent transportation systems, and service patterns; performance in ridership, travel times, and land development; and the emerging implications for new systems. It is important to match transit markets to rights-of-way; achieve benefits in speed, reliability, and identity; minimize adverse impacts to street traffic, property access, and pedestrians; and obtain community support throughout an open planning process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.