The isolation of single stereoisomers from a racemic (or diastereomeric) mixture by enzymatic or chemical resolution techniques goes in hand with the disposal of 50% (racemate) or more (diastereomeric mixtures) of the "undesired" substrate isomer(s). In order to circumvent this drawback, dynamic systems have been developed for the de-racemization of enantiomers and the de-epimerizations of diastereomers. Key strategies within this area are discussed and are classified according to their underlying kinetics, that is, dynamic kinetic resolution (DKR), dynamic kinetic asymmetric transformations (DYKAT), and hybrids between both of them. Finally, two novel types of DYKAT are defined.
The full-length cDNA of (S)-hydroxynitrile lyase (Hnl) from leaves of Hevea brasiliensis (tropical rubber tree) was cloned by an immunoscreening and sequenced. Hnl from H. brasiliensis is involved in the biodegradation of cyanogenic glycosides and also catalyzes the stereospecific synthesis of aliphatic, aromatic, and heterocyclic cyanohydrins, which are important as precursors for pharmaceutical compounds. The open reading frame identified in a 1.1-kilobase cDNA fragment codes for a protein of 257 amino acids with a predicted molecular mass of 29.2 kDa. The derived protein sequence is closely related to the (S)-hydroxynitrile lyase from Manihot esculenta (Cassava) and also shows significant homology to two proteins of Oryza sativa with as yet unknown enzymatic function. The H. brasiliensis protein was expressed in Escherichia coli and Saccharomyces cerevisiae and isolated in an active form from the respective soluble fractions. Replacement of cysteine 81 by serine drastically reduced activity of the heterologous enzyme, suggesting a role for this amino acid residue in the catalytic action of Hnl.
A novel biocatalytic protocol for CC bond formation is described and is an equivalent to Friedel–Crafts alkylation. S‐Adenosyl‐L‐methionine (SAM), the major methyl donor for biological methylation catalyzed by methyltransferases (Mtases), can perform alkylations (see scheme). These enzymes can accept non‐natural cofactors and transfer functionalities other than methyl onto aromatic substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.