The specificity of protein-protein interactions in cellular signaling cascades is dependent on the sequence and intramolecular location of distinct amino acid motifs. We used the two-hybrid interaction trap to identify proteins that can associate with the PDZ motif-rich segment in the protein tyrosine phosphatase PTP-BL. A specific interaction was found with the Lin-11, Isl-1, Mec-3 (LIM) domain containing protein RIL. More detailed analysis demonstrated that the binding specificity resides in the second and fourth PDZ motif of PTP-BL and the LIM domain in RIL. Immunohistochemistry on various mouse tissues revealed a submembranous colocalization of PTP-BL and RIL in epithelial cells. Remarkably, there is also an N-terminal PDZ motif in RIL itself that can bind to the RIL-LIM domain. We demonstrate here that the RIL-LIM domain can be phosphorylated on tyrosine in vitro and in vivo and can be dephosphorylated in vitro by the PTPase domain of PTP-BL. Our data point to the presence of a double PDZ-binding interface on the RIL-LIM domain and suggest tyrosine phosphorylation as a regulatory mechanism for LIM-PDZ associations in the assembly of multiprotein complexes. These findings are in line with an important role of PDZ-mediated interactions in the shaping and organization of submembranous microenvironments of polarized cells.
Trypanosoma brucei is a unicellular parasite transmitted between African mammals by tsetse flies. T. brucei multiplies freely in the bloodstream of many different mammals, and survives by antigenic variation of the main component of its surface coat, variant surface glycoprotein (VSG). Trypanosomes take up transferrin through a heterodimeric transferrin receptor, the genes for which are expressed in telomeric expression sites along with the VSG gene. There are up to 20 of these expression sites per trypanosome nucleus, but usually only one is active at a time. Different expression sites encode transferrin receptors that are similar but not identical. Here we show that these small differences between transferrin receptors can have profound effects on the binding affinity for transferrins from different mammals, and on the ability of trypanosomes to grow in the sera of these mammals. Our results suggest that the ability to switch between different transferrin-receptor genes allows T. brucei to cope with the large sequence diversity in the transferrins of its hosts.
Transfer of bloodstream-form Trypanosoma brucei variant 221a from calf serum to dog serum-based medium induces acute iron starvation, as the transferrin receptor (Tf-R) of variant 221a binds dog Tf poorly. We show here that transfer to dog serum induces a 3-5-fold increase in Tf-R mRNA and protein within one doubling time (8 h). Because iron stores are still high 8 h after transfer, we infer that the signal for Tf-R overproduction is the decreased availability of cytosolic iron when cellular iron import drops. Up to 30% of the extra Tf-R spills out of the flagellar pocket onto the pellicular surface. Because the 5-fold increase in Tf-R is accompanied by a 5-fold increase in bovine Tf uptake, the up-regulation of Tf-R levels in response to Tf starvation helps the trypanosome to compete for limiting amounts of Tf. We noted that Tf-R levels also vary in calf serum medium. Cells in dense cultures contain up to 5-fold more Tf-R mRNA and protein than in dilute cultures. Only onetenth of the extra Tf-R reaches the pellicular surface. The increase cannot be explained by a lack of Tf or to cell density sensing but is due to pericellular hypoxia. Our results show that bloodstream-form trypanosomes can regulate the expression of the two Tf-R subunit genes and the localization of their gene products in a flexible manner. This flexibility is made possible by the promoter-proximal position of the two genes in the variant surface glycoprotein expression site.The unicellular protozoan parasite Trypanosoma brucei can infect a broad range of mammals. It multiplies extracellularly in blood and escapes elimination by the immune system through antigenic variation of its surface coat, which consists of one major protein species, the variant surface glycoprotein (VSG), 1 attached to the plasma membrane by a glycosylphosphatidylinositol anchor (1, 2). African trypanosomes cover their iron need by taking up host transferrin (Tf) (3-5). Uptake occurs in the flagellar pocket (3, 6, 7), an invagination of the plasma membrane where all endocytosis and traffic to the trypanosome surface takes place (8 -12), and is mediated by a transferrin receptor (Tf-R), a heterodimer consisting of subunits encoded by expression site-associated gene (ESAG) 6 and 7 (13-17), which are located in the telomeric VSG gene expression sites (for review, see .The ESAG6 subunit of about 400 amino acids is attached to the plasma membrane by a glycosylphosphatidylinositol anchor; ESAG7 of about 340 amino acids remains membraneattached by holding on to ESAG6 (for review, see Ref. 22). The trypanosomal Tf-R resembles VSG dimers in apparent structure and (distantly) in sequence (23), and it is unlike other Tf-Rs in nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.