The hypothesis of boron neutron capture therapy (BNCT) research has been that the short-range, high-linear energy transfer radiation produced by the capture of thermal neutrons by (10)B will potentially control tumor and spare normal tissue only if the boron compound selectively targets tumor tissue within the treatment volume. In a previous in vivo study of low-dose BNCT mediated by GB-10 (Na(2)(10)B(10)H(10)) alone or combined with boronophenylalanine (BPA) in the hamster cheek pouch oral cancer model that was primarily designed to evaluate safety and feasibility, we showed therapeutic effects but no associated normal tissue radiotoxicity. In the present study, we evaluated the response of tumor, precancerous and normal tissue to high-dose BNCT mediated by GB-10 alone or combined with BPA. Despite the fact that GB-10 does not target hamster cheek pouch tumors selectively, GB-10-BNCT induced a 70% overall tumor response with no damage to normal tissue. (GB-10+BPA)-BNCT induced a 93% overall tumor response with no normal tissue radiotoxicity. Light microscope analysis showed that GB-10-BNCT selectively damages tumor blood vessels, sparing precancerous and normal tissue vessels. In this case, selective tumor lethality would thus result from selective blood vessel damage rather than from selective uptake of the boron compound.
This article reports on the progress of the modeling and experimental characterization of the RA-6 reactor neutron beam, designed for the upcoming BNCT clinical trials of skin melanoma, and presents the first theoretical analysis of such beam performance. The aspects relating to surface source modeling and assessment, beam dosimetry, treatment planning system calibration, and treatment planning optimization are presented herein. Several methods and criteria were established in order to provide guidance for future clinical studies conducted in this facility. Following a realistic model, the theoretical analysis was based on a clinical case of malignant melanoma in extremities. Owing to the complex geometry of the tumor, this particular clinical case represents one of the most difficult lesions to be treated. This article discusses the thorough evaluation stage that has led to the optimization of the treatment planning procedure. Two candidate plans were proposed, and dose-volume distributions in the target volume were evaluated on the basis of the application of a series of criteria that define the critical normal structures which limit the dose delivered. In spite of the complexity of the clinical case under review, results showed that only 4% of the tumor volume is underdosed in cases of mean blood 10B concentration values, even in the most unfavorable analysis. The overall results suggest that this BNCT facility is prepared to rigorously explore the clinical efficacy of the RA-6 beam and the BNCT treatment modality for peripheral melanomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.