Expansin proteins, which have so far been identified only in plants, rapidly induce extension of plant cell walls by weakening the non-covalent interactions that help to maintain their integrity. Here we show that an animal, the plant-parasitic roundworm Globodera rostochiensis, can also produce a functional expansin, which it uses to loosen cell walls when invading its host plant. As this nematode is known to be able to disrupt covalent bonds in plant cell walls, its accompanying ability to loosen non-covalent bonds challenges the prevailing view that animals are genetically poorly equipped to degrade plant cell walls.
A new strategy has been designed to identify putative pathogenicity factors from the dorsal or subventral esophageal glands of the potato cyst nematode Globodera rostochiensis. Three independent criteria were used for selection. First, genes of interest should predominantly be expressed in infective second-stage juveniles, and not, or to a far lesser extent, in younger developmental stages. For this, gene expression profiles from five different developmental stages were generated with cDNA-AFLP (amplified fragment length polymorphism). Secondly, the mRNA corresponding to such a putative pathogenicity factor should predominantly be present in the esophageal glands of pre-parasitic juveniles. This was checked by in situ hybridization. As a third criterion, these proteinaceous factors should be preceded by a signal peptide for secretion. Expression profiles of more than 4,000 genes were generated and three up-regulated, dorsal gland-specific proteins preceded by signal peptide for secretion were identified. No dorsal gland genes have been cloned before from plant-parasitic nematodes. The partial sequence of these three factors, A4, A18, and A41, showed no significant homology to any known gene. Their presence in the dorsal glands of infective juveniles suggests that these proteins could be involved in feeding cell initiation, and not in migration in the plant root or in protection against plant defense responses. Finally, the applicability of this new strategy in other plant-microbe interactions is discussed.
The prevalence of obesity and related metabolic disorders increases rapidly in western societies. A proper choice of foods may now prevent or delay many of the health consequences related to these disorders. In this respect, replacing dietary saturated fatty acids (SFAs) by cis-monounsaturated fatty acids (cis-MUFAs) has beneficial effects. In addition to diet-derived cis-MUFAs, the human body can also generate cis-MUFAsfrom SFAs through the action of stearoyl-CoA desaturases (SCDs). SCDs may play an adverse role in obesity and obesity-related insulin resistance. Here, we review the current knowledge on the molecular aspects and the role of SCD1 in obesity and the metabolic syndrome (MS). In mice, many studies have suggested a negative role for SCD1 in the development of obesity and insulin resistance. In humans, however, evidence is less convincing. If anything, increased, rather than decreased, levels of SCD1 mRNA levels are negatively associated with MS-related diseases such as insulin resistance. However, an unequivocal conclusion is currently not possible as the number of human studies is limited. Therefore, more human studies are needed at the molecular as well as at the physiological level to understand the true role of SCD1 during the development of obesity and the MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.