We consider the question of whether or not a given primitive substitution preserves its sets of return words-or return sets for short. More precisely, we study the property asking that the image of the return set to a word equals the return set to the image of that word. We show that, for bifix encodings (where images of letters form a bifix code), this property holds for all but finitely many words. On the other hand, we also show that every conjugacy class of Sturmian substitutions contains a member for which the property fails infinitely often. Various applications and examples of these results are presented, including a description of the subgroups generated by the return sets in the shift of the Thue-Morse substitution. Up to conjugacy, these subgroups can be sorted into strictly decreasing chains of isomorphic subgroups weaving together a simple pattern. This is in stark contrast with the Sturmian case, and more generally with the dendric case (including in particular the Arnoux-Rauzy case), where it is known that all return sets generate the free group over the underlying alphabet.
This paper is a contribution to understanding what properties should a topological algebra on a Stone space satisfy to be profinite. We reformulate and simplify proofs for some known properties using syntactic congruences. We also clarify the role of various alternative ways of describing syntactic congruences, namely by finite sets of terms and by compact sets of continuous self mappings of the algebra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.