◥Oxidative stress, caused by the imbalance between reactive species generation and the dysfunctional capacity of antioxidant defenses, is one of the characteristic features of cancer. Here, we quantified hydrogen peroxide in the tumor microenvironment (TME) and demonstrated that hydrogen peroxide concentrations are elevated in tumor interstitial fluid isolated from murine breast cancers in vivo, when compared with blood or normal subcutaneous fluid. Therefore, we investigated the effects of increased hydrogen peroxide concentration on immune cell functions. NK cells were more susceptible to hydrogen peroxide than T cells or B cells, and by comparing T, B, and NK cells' sensitivities to redox stress and their antioxidant capacities, we identified peroxiredoxin-1 (PRDX1) as a lacking element of NK cells' antioxidative defense. We observed that priming with IL15 protected NK cells' functions in the presence of high hydrogen peroxide and simultaneously upregulated PRDX1 expression. However, the effect of IL15 on PRDX1 expression was transient and strictly dependent on the presence of the cytokine. Therefore, we genetically modified NK cells to stably overexpress PRDX1, which led to increased survival and NK cell activity in redox stress conditions. Finally, we generated PD-L1-CAR NK cells overexpressing PRDX1 that displayed potent antitumor activity against breast cancer cells under oxidative stress. These results demonstrate that hydrogen peroxide, at concentrations detected in the TME, suppresses NK cell function and that genetic modification strategies can improve CAR NK cells' resistance and potency against solid tumors. * À , H 2 O 2 OH * , ONOO À , HOCl, HOBr), hydrogen peroxide (H 2 O 2 ) has the highest stability and highest intracellular concentration (5). It undergoes facilitated and regulated diffusion across organelle and plasma membranes through aquaporin (AQP) channel transporters (6). Once transported into the cell, H 2 O 2 can be neutralized by intracellular antioxidant defenses, such as lowmolecular-weight thiols-mainly glutathione (GSH)-and various
Highlights d mTOR-dependent hierarchy determines proliferative capacity of NK cells d NK cell education is an inheritable state during cell division d Intra-lineage plasticity maintains phenotypic and functional NK cell homeostasis d The acquired phenotype determines functional potential in NK cells
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.