Abstract. This paper reports on the factorization of the 768-bit number RSA-768 by the number field sieve factoring method and discusses some implications for RSA.
Abstract. This paper reports on the factorization of the 768-bit number RSA-768 by the number field sieve factoring method and discusses some implications for RSA.
Abstract. On February 2, 1999, we completed the factorization of the 140-digit number RSA-140 with the help of the Number Field Sieve factoring method (NFS). This is a new general factoring record. The previous record was established on April 10, 1996 by the factorization of the 130-digit number RSA-130, also with the help of NFS. The amount of computing time spent on RSA-140 was roughly twice that needed for RSA-130, about half of what could be expected from a straightforward extrapolation of the computing time spent on factoring RSA-130. The speed-up can be attributed to a new polynomial selection method for NFS which will be sketched in this paper. The implications of the new polynomial selection method for factoring a 512-bit RSA modulus are discussed and it is concluded that 512-bit (= 155-digit) RSA moduli are easily and realistically within reach of factoring efforts similar to the one presented here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.