This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell–derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.Electronic supplementary materialThe online version of this article (doi:10.1007/s00204-013-1078-5) contains supplementary material, which is available to authorized users.
Epitopes presented by major histocompatibility complex (MHC) class I molecules are selected by a multi-step process. Here we present the first computational prediction of this process based on in vitro experiments characterizing proteasomal cleavage, transport by the transporter associated with antigen processing (TAP) and MHC class I binding. Our novel prediction method for proteasomal cleavages outperforms existing methods when tested on in vitro cleavage data. The analysis of our predictions for a new dataset consisting of 390 endogenously processed MHC class I ligands from cells with known proteasome composition shows that the immunological advantage of switching from constitutive to immunoproteasomes is mainly to suppress the creation of peptides in the cytosol that TAP cannot transport. Furthermore, we show that proteasomes are unlikely to generate MHC class I ligands with a C-terminal lysine residue, suggesting processing of these ligands by a different protease that may be tripeptidyl-peptidase II (TPPII).
We present HepatoNet1, a manually curated large-scale metabolic network of the human hepatocyte that encompasses >2500 reactions in six intracellular and two extracellular compartments.Using constraint-based modeling techniques, the network has been validated to replicate numerous metabolic functions of hepatocytes corresponding to a reference set of diverse physiological liver functions.Taking the detoxification of ammonia and the formation of bile acids as examples, we show how these liver-specific metabolic objectives can be achieved by the variable interplay of various metabolic pathways under varying conditions of nutrients and oxygen availability.
Cellular functions are ultimately linked to metabolic fluxes brought about by thousands of chemical reactions and transport processes. The synthesis of the underlying enzymes and membrane transporters causes the cell a certain ÔeffortÕ of energy and external resources. Considering that those cells should have had a selection advantage during natural evolution that enabled them to fulfil vital functions (such as growth, defence against toxic compounds, repair of DNA alterations, etc.) with minimal effort, one may postulate the principle of flux minimization, as follows: given the available external substrates and given a set of functionally important ÔtargetÕ fluxes required to accomplish a specific pattern of cellular functions, the stationary metabolic fluxes have to become a minimum. To convert this principle into a mathematical method enabling the prediction of stationary metabolic fluxes, the total flux in the network is measured by a weighted linear combination of all individual fluxes whereby the thermodynamic equilibrium constants are used as weighting factors, i.e. the more the thermodynamic equilibrium lies on the right-hand side of the reaction, the larger the weighting factor for the backward reaction. A linear programming technique is applied to minimize the total flux at fixed values of the target fluxes and under the constraint of flux balance (¼ steady-state conditions) with respect to all metabolites. The theoretical concept is applied to two metabolic schemes: the energy and redox metabolism of erythrocytes, and the central metabolism of Methylobacterium extorquens AM1. The flux rates predicted by the fluxminimization method exhibit significant correlations with flux rates obtained by either kinetic modelling or direct experimental determination. Larger deviations occur for segments of the network composed of redundant branches where the flux-minimization method always attributes the total flux to the thermodynamically most favourable branch. Nevertheless, compared with existing methods of structural modelling, the principle of flux minimization appears to be a promising theoretical approach to assess stationary flux rates in metabolic systems in cases where a detailed kinetic model is not yet available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.