In conclusion, the benefit of rough surfaces relative to minimally rough ones in this loaded animal model was confirmed histologically. The comparison of different surface treatment modalities revealed no significant differences between the modern moderately rough surfaces. Resonance frequency analysis seems to be influenced in a major part by the transducer used, thus prohibiting the comparison of different implant systems.
The generation and interpretation of micro-CT based 3-D pore models can provide further insight into the expected osteoconduction dynamics and therefore might serve as a basis for further modifications of scaffold size and geometry as well as for further invasive studies on the biological behaviour of the scaffolds.
Clinical studies on subarachnoid hemorrhage (SAH) have shown discrepancies between large vessel vasospasm, cerebral perfusion, and clinical outcome. We set out to analyze the contribution of large vessel vasospasm to impaired cerebral perfusion and neurological impairment in a murine model of SAH. SAH was induced in C57BL/6 mice by endovascular filament perforation. Vasospasm was analyzed with microcomputed tomography, cortical perfusion by laser SPECKLE contrast imaging, and functional impairment with a quantitative neuroscore. SAH animals developed large vessel vasospasm, as shown by significantly lower vessel volumes of a 2.5-mm segment of the left middle cerebral artery (MCA) (SAH 5.6 ± 0.6 nL, sham 8.3 ± 0.5 nL, p < 0.01). Induction of SAH significantly reduced cerebral perfusion of the corresponding left MCA territory compared to values before SAH, which only recovered partly (SAH vs. sham, 15 min 35.7 ± 3.1 vs. 101.4 ± 10.2%, p < 0.01; 3 h, 85.0 ± 8.6 vs. 121.9 ± 13.4, p < 0.05; 24 h, 75.3 ± 4.6 vs. 110.6 ± 11.4%, p < 0.01; 72 h, 81.8 ± 4.8 vs. 108.5 ± 14.5%, n.s.). MCA vessel volume did not correlate significantly with MCA perfusion after 72 h (r = 0.34, p = 0.25). Perfusion correlated moderately with neuroscore (24 h: r = − 0.58, p < 0.05; 72 h: r = − 0.44, p = 0.14). There was no significant correlation between vessel volume and neuroscore after 72 h (r = − 0.21, p = 0.50). In the murine SAH model, cerebral hypoperfusion occurs independently of large vessel vasospasm. Neurological outcome is associated with cortical hypoperfusion rather than large vessel vasospasm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.