Effects of roads in forested ecosystems span direct physical and ecological ones (such as geomorphic and hydrologic effects), indirect and landscape level ones (such as effects on aquatic habitat, terrestrial vertebrates, and biodiversity conservation), and socioeconomic ones (such as passive-use value, economic effects on development and range management). Road effects take place in the contexts of environmental settings, their history, and the state of engineering practices, and must be evaluated in those contexts for best management approaches.Keywords: Roads, roadless areas, forest ecosystems, geomorphology, hydrology, habitat fragmentation, biodiversity, nonmarket values, heritage values, economic development, grazing, mineral resources, fire. AbstractRoads are a vital component of civilization. They provide access for people to study, enjoy, and commune with forested wildlands and to extract an array of resources from natural and modified ecosystems. Roads have well-documented, short-and long-term effects on the environment that have become highly controversial, because of the value society now places on unroaded wildlands and because of wilderness conflicts with resource extraction.The approach taken in this report is to identify known and hypothesized road-related issues and to summarize the scientific information available about them. The report identifies links among processes and effects that suggest both potential compatible uses and potential problems and risks. Generalizations are made where appropriate, but roads issues and road science usually cannot be effectively separated from the specific ecologic, economic, social, and public lands management contexts in which roads exist or are proposed.Across a forest or river basin, the access needs, economic dependencies, landscape sensitivities, downstream beneficial uses of water, and so on can be reasonably well defined, but these relations tend to differ greatly from place to place. An effective synthesis of road issues draws local experts together to thoroughly evaluate road and access benefits, problems and risks, and to inform managers about what roads may be needed, for how long, for what purposes, and at what benefits and costs to the agency and society.Road effects and uses may be somewhat arbitrarily divided into beneficial and detrimental. The largest group of beneficial variables relates to access. We identified access-related benefits as harvest of timber and special forest products, grazing, mining, recreation, fire control, land management, research and monitoring, access to private inholdings, restoration, local community critical needs, subsistence, and the cultural value of the roads themselves. Nonaccess-related benefits include edge habitat, fire breaks, absence of economic alternatives for land management, and jobs associated with building and maintaining the roads.Undesirable consequences include adverse effects on hydrology and geomorphic features (such as debris slides and sedimentation), habitat fragmentation, predation, road ki...
Stratospheric ozone depletion may result in increased solar UV-B radiation to the ocean's upper layers and may cause deleterious effects on marine organisms. The primary UV-B damage induced in biological systems is to DNA. While physical measurements of solar UV-B penetration into the sea have been made, the effective depth and magnitude of actual DNA damage have not been determined. In the experiments reported here, UV-B-induced photoproducts (cyclobutane pyrimidine dimers) have been quantified in DNA molecules exposed to solar UV at the surface and at various depths in clear, tropical marine waters off Lee Stocking Island (23 degrees 45' N, 76 degrees 0.7' W), Exuma Cays, Bahamas. (14C)thymidine-labeled DNA or unlabeled bacteriophage phi X174 DNA was placed in specially designed quartz tubes at various depths for up to five days. Following exposure, DNA samples were removed to the laboratory where UV-B-induced pyrimidine dimers were quantified using a radiochromatographic assay, and bacteriophage DNA inactivation by solar UV-B was assayed by plaque formation in spheroplasts of Escherichia coli. Pyrimidine dimer induction was linear with time but the accumulation of dimers in DNA with time varied greatly with depth. Attenuation of dimer formation with depth of water was exponential. DNA at 3 m depth had only 17% of the pyrimidine dimers found at the surface. Bacteriophage phi X174 DNA, while reduced 96% in plaque-forming ability by a one day exposure to solar UV at the surface of the water, showed no effect on plaque formation after a similar exposure at 3 m. The data collected at the water's surface showed a "surface-enhanced dose" in that DNA damages at the real surface were greater than at the imaginary surface, which was obtained by extrapolating the data at depth to the surface. These results show the sensitivity of both the biochemical (dimers) and biological (phage plaques) DNA dosimeters. DNA dosimeters offer a sensitive, convenient and relatively inexpensive monitoring system, having both biochemical and biological endpoints for monitoring the biologically effective UV-B flux in the marine environment. Unlike physical dosimeters, DNA dosimeters do not have to be adjusted for biological effectiveness since they are sensitive only to DNA-mediated biologically effective UV-B radiation. Results of pyrimidine dimer induction in DNA by solar UV accurately predicted UV doses to the phage DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.