Motile cilia induce fluid movement through their rhythmic beating activity. In mammals, the transcription factor Foxj1 has been implicated in motile cilia formation. Here we show that a zebrafish Foxj1 homolog, foxj1a, is a target of Hedgehog signaling in the floor plate. Loss of Foxj1a compromises the assembly of motile cilia that decorate floor plate cells. Besides the floor plate, foxj1a is expressed in Kupffer's vesicle and pronephric ducts, where it also promotes ciliary differentiation. We show that Foxj1a activates a constellation of genes essential for motile cilia formation and function, and that its activity is sufficient for ectopic development of cilia that resemble motile cilia. We also document that a paralogous gene, foxj1b, is expressed in the otic vesicle and seems to regulate motile cilia formation in this tissue. Our findings identify a dedicated master regulatory role for Foxj1 in the transcriptional program that controls the production of motile cilia.
Millions of people worldwide are affected by neurodegenerative diseases (NDs), and to date, no effective treatment has been reported. The hallmark of these diseases is the formation of pathological aggregates and fibrils in neural cells. Many studies have reported that catechins, polyphenolic compounds found in a variety of plants, can directly interact with amyloidogenic proteins, prevent the formation of toxic aggregates, and in turn play neuroprotective roles. Besides harboring amyloidogenic domains, several proteins involved in NDs possess arginine-glycine/arginine-glycine-glycine (RG/RGG) regions that contribute to the formation of protein condensates. Here, we aimed to assess whether epigallocatechin gallate (EGCG) can play a role in neuroprotection via direct interaction with such RG/RGG regions. We show that EGCG directly binds to the RG/RGG region of fused in sarcoma (FUS) and that arginine methylation enhances this interaction. Unexpectedly, we found that low micromolar amounts of EGCG were sufficient to restore RNA-dependent condensate formation of methylated FUS, whereas, in the absence of EGCG, no phase separation could be observed. Our data provide new mechanistic roles of EGCG in the regulation of phase separation of RG/RGG-containing proteins, which will promote understanding of the intricate function of EGCG in cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.