The unique properties of gold nanoparticles have stimulated the increasing interest in the application of GNPs in interfacing biological recognition events with signal transduction and in designing biosensing devices exhibiting novel functions. The optical properties of GNPs provide wide range opportunities for construction optical biosensors. The excellent biocompatibility, conductivity, catalytic properties and high surface-to-volume ratio and high density of GNPs facilitate extensive application of GNPs in construction of electrochemical and piezoelectric biosensors with enhanced analytical performance with respect to other biosensor designs. In this article, the recent advances in construction of GNP-based optical, electrochemical and piezoelectric biosensors are reviewed, and some illustrative examples given, with a focus on the roles GNPs play in the biosensing process and the mechanism of GNPs for improving the analytical performances. Finally, the review concludes with an outline of present and future research for the real-world applications.
Tumor microvessels differ in structure and metabolic function from normal vasculature, and neoangiogenesis is associated with quantitative and qualitative changes in expression of endothelial proteins. Such molecules could serve as molecular addresses differentiating the tumor vasculature from those of the normal brain. We have applied Systematic Evolution of Ligands by EXponential enrichment (SELEX) against transformed endothelial cells as a complex target to select single-stranded DNA-ligands (aptamers) that function as histological markers to detect microvessels of rat experimental glioma, a fatal brain tumor that is highly vascularized. Both the SELEX selection procedure as well as subsequent deconvolution-SELEX were analyzed by fluorescence based methods (flow cytometry and fluorescence microscopy). Of 25 aptamers analyzed, one aptamer was selected that selectively bound microvessels of rat brain glioblastoma but not the vasculature of the normal rat brain including peritumoral areas. The molecular target protein of aptamer III.1 was isolated from endothelial cells by ligand-mediated magnetic DNA affinity purification. This protein was identified by mass spectrometry as rat homologue of mouse pigpen, a not widely known endothelial protein the expression of which parallels the transition from quiescent to angiogenic phenotypes in vitro. Because neoangiogenesis, the formation of new blood vessels, is a key feature of tumor development, the presented aptamer can be used as a probe to analyze pathological angiogenesis of glioblastoma. The presented data show that pigpen is highly expressed in tumor microvessels of experimental rat brain glioblastoma and may play an important role in warranting blood supply, thus growth of brain tumors.
Hesperidin, a member of the flavanone group of flavonoids, can be isolated in large amounts from the rinds of some citrus species. Considering the wide range of pharmacological activities and widespread application of hesperidin, this paper reviews preclinical and clinical trials of hesperidin and its related compounds, including their occurrence, pharmacokinetics, and some marketed products available. Preclinical studies and clinical trials demonstrated therapeutical effects of hesperidin and its aglycone hesperetin in various diseases, such as neurological disorders, psychiatric disorders, and cardiovascular diseases and others, due to its anti-inflammatory, antioxidant, lipid-lowering, and insulin-sensitizing properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.