The ectonucleotidases CD39 and CD73 degrade immune stimulatory ATP to adenosine that inhibits T and NK cell responses via the A(2A) adenosine receptor (ADORA2A). This mechanism is used by regulatory T cells (T(reg)) that are associated with increased mortality in OvCA. Immunohistochemical staining of human OvCA tissue specimens revealed further aberrant expression of CD39 in 29/36 OvCA samples, whereas only 1/9 benign ovaries showed weak stromal CD39 expression. CD73 could be detected on 31/34 OvCA samples. While 8/9 benign ovaries also showed CD73 immunoreactivity, expression levels were lower than in tumour specimens. Infiltration by CD4(+) and CD8(+) T cells was enhanced in tumour specimens and significantly correlated with CD39 and CD73 levels on stromal, but not on tumour cells. In vitro, human OvCA cell lines SK-OV-3 and OaW42 as well as 11/15 ascites-derived primary OvCA cell cultures expressed both functional CD39 and CD73 leading to more efficient depletion of extracellular ATP and enhanced generation of adenosine as compared to activated T(reg). Functional assays using siRNAs against CD39 and CD73 or pharmacological inhibitors of CD39, CD73 and ADORA2A revealed that tumour-derived adenosine inhibits the proliferation of allogeneic human CD4(+) T cells in co-culture with OvCA cells as well as cytotoxic T cell priming and NK cell cytotoxicity against SK-OV3 or OAW42 cells. Thus, both the ectonucleotidases CD39 and CD73 and ADORA2A appear as possible targets for novel treatments in OvCA, which may not only affect the function of T(reg) but also relieve intrinsic immunosuppressive properties of tumour and stromal cells.
The majority of Merkel cell carcinomas (MCCs) are associated with the recently identified Merkel cell polyomavirus (MCV). However, as it is still unclear to which extent the presence of MCV impacts tumor characteristics or clinical outcome, we correlated the MCV status of tumor lesions obtained from 174 MCC patients including 38 MCC patients from Australia and 138 MCC patients from Germany with clinical characteristics, histomorphology, immunohistochemistry, and course of the disease. MCV DNA was present in 86% of MCCs and, in contrast to previous reports, no significant difference in MCV prevalence was present between Australian and German MCC cases. When patients were stratified according to their MCV status, only tumor localization (P=0.001), gender (P=0.024), and co-morbidity, i.e., frequency of patients with previous skin tumors (P=0.024), were significantly different factors. In contrast, year of birth and diagnosis, age at diagnosis, or histological type and features representing the oncogenic phenotype such as mitotic rate or expression of p16, p53, RB1, and Ki67 were not significantly different between MCV-positive and MCV-negative MCCs. MCV status also did not influence recurrence-free, overall, and MCC-specific survival significantly. In summary, although MCV-positive and MCV-negative MCCs may have different etiologies, these tumors have comparable clinical behaviors and prognosis.
HER2 determination by IHC and FISH correlates with clinical response data in the WO16229 trial with high concordance of IHC and FISH results. Polysomy is the major cause of response in FISH-negative cases; polysomic cases should be retested by strictly standardised IHC.
Background Immune checkpoint inhibition and in particular anti-PD-1 immunotherapy have revolutionized the treatment of advanced melanoma. In this regard, higher tumoral PD-L1 protein (gene name: CD274) expression is associated with better clinical response and increased survival to anti-PD-1 therapy. Moreover, there is increasing evidence that tumor suppressor proteins are involved in immune regulation and are capable of modulating the expression of immune checkpoint proteins. Here, we determined the role of p53 protein (gene name: TP53) in the regulation of PD-L1 expression in melanoma. Methods We analyzed publicly available mRNA and protein expression data from the cancer genome/proteome atlas and performed immunohistochemistry on tumors with known TP53 status. Constitutive and IFN-ɣ-induced PD-L1 expression upon p53 knockdown in wildtype, TP53-mutated or JAK2-overexpressing melanoma cells or in cells, in which p53 was rendered transcriptionally inactive by CRISPR/Cas9, was determined by immunoblot or flow cytometry. Similarly, PD-L1 expression was investigated after overexpression of a transcriptionally-impaired p53 (L22Q, W23S) in TP53-wt or a TP53-knockout melanoma cell line. Immunoblot was applied to analyze the IFN-ɣ signaling pathway. Results For TP53-mutated tumors, an increased CD274 mRNA expression and a higher frequency of PD-L1 positivity was observed. Interestingly, positive correlations of IFNG mRNA and PD-L1 protein in both TP53-wt and -mutated samples and of p53 and PD-L1 protein suggest a non-transcriptional mode of action of p53. Indeed, cell line experiments revealed a diminished IFN-ɣ-induced PD-L1 expression upon p53 knockdown in both wildtype and TP53-mutated melanoma cells, which was not the case when p53 wildtype protein was rendered transcriptionally inactive or by ectopic expression of p53L22Q,W23S, a transcriptionally-impaired variant, in TP53-wt cells. Accordingly, expression of p53L22Q,W23S in a TP53-knockout melanoma cell line boosted IFN-ɣ-induced PD-L1 expression. The impaired PD-L1-inducibility after p53 knockdown was associated with a reduced JAK2 expression in the cells and was almost abrogated by JAK2 overexpression. Conclusions While having only a small impact on basal PD-L1 expression, both wildtype and mutated p53 play an important positive role for IFN-ɣ-induced PD-L1 expression in melanoma cells by supporting JAK2 expression. Future studies should address, whether p53 expression levels might influence response to anti-PD-1 immunotherapy.
IntroductionCutaneous T-cell lymphomas (CTCL) are the most frequent primary lymphomas of the skin, with mycosis fungoides (MF) being the most prevalent clinical form. 1 In early disease stages, which can last several years, MF presents as flat erythematous skin patches resembling inflammatory diseases such as allergic contact dermatitis, eczema, or psoriasis. In later stages, MF lesions gradually form plaques and overt tumors and may disseminate to lymph nodes and internal organs. The early skin lesions contain numerous inflammatory cells, including a large quantity of T cells with a normal phenotype as well as a small population of T cells with abnormal morphology and a malignant phenotype. T cells with a malignant phenotype are characterized by epidermotropism and are preferentially present in the upper parts of the skin, whereas T cells with a normal phenotype primarily are detected in the lower portions of the dermis. The epidermal T cells are sometimes found in patterns of Pautrier microabscesses, which are collections of T cells adherent to dendritic processes of Langerhans cells. During disease development, the epidermotropism is gradually lost concomitant with an increase in malignant, and a decrease in nonmalignant, infiltrating T cells. The etiology of CTCL remains poorly understood, and occupational exposures, infectious agents, and genetic mutations have been proposed as etiological factors, but no evidence of causation has been provided. [2][3][4][5][6] However, already in early disease stages, the transcription factor nuclear factor-kappa B (NF-B) has been shown to be constitutively active in the malignant T cells of patients with CTCL where it promotes proliferation and cell survival. [7][8][9] The malignant T cells also show aberrant hyperactivation of the Janus kinase 3 (Jak3)/signal transducer and activator of transcription 3 (Stat3) pathway, which protects them from apoptosis and is a marker of resistance to therapy. [10][11][12][13] It has been hypothesized that the aberrant activation of NF-B and the Jak3/Stat3 pathway are key events in the development of CTCL. [7][8][9][10] Early diagnosis of CTCL has important consequences concerning therapeutic options and determination of prognosis. 14 Currently, it is primarily based on clinical observations and histologic examinations of cutaneous biopsies as well as additional laboratory tests such as analysis of T-cell receptor (TCR) clonality by polymerase chain reaction (PCR). Unfortunately, early diagnosis of CTCL has proven difficult because of the great clinical, pathologic, and histologic resemblance to benign inflammatory skin diseases and because inflammatory skin disorders can be associated with clonal TCR rearrangements. [15][16][17][18] In humans, the Src family kinases (SFKs) of nonreceptor protein tyrosine kinases classically consists of 8 members: c-Src, Fyn, Lck, c-Yes, Fgr, Hck, Lyn, and B-lymphoid kinase (Blk). 19 Blk is exclusively expressed in B cells and thymocytes but not in mature T cells. [20][21][22] Besides a role of Blk in B...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.