Summary
Accurate pathological diagnosis is crucial for optimal management of cancer patients. For the ~100 known central nervous system (CNS) tumour entities, standardization of the diagnostic process has been shown to be particularly challenging - with substantial inter-observer variability in the histopathological diagnosis of many tumour types. We herein present the development of a comprehensive approach for DNA methylation-based CNS tumour classification across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that availability of this method may have substantial impact on diagnostic precision compared with standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility we have designed a free online classifier tool (www.molecularneuropathology.org) requiring no additional onsite data processing. Our results provide a blueprint for the generation of machine learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.
Craniopharyngiomas are rare histologically benign but clinically challenging neoplasms. To obtain further information on the molecular genetics and biology of craniopharyngiomas, we analyzed a cohort of 121 adamantinomatous and 16 papillary craniopharyngiomas (ACP, PCP). We extracted DNA from formalin-fixed paraffin-embedded tissue and determined mutational status of CTNNB1, BRAF, and DDX3X by Sanger sequencing, next generation panel sequencing, and pyrosequencing. Sixteen craniopharyngiomas were further analyzed by molecular inversion profiling (MIP); 76.1% of the ACP were mutated in exon 3 of CTNNB1 encoding for β-catenin and there was a trend towards a worse event-free survival in cases mutated at Thr41. Next generation panel sequencing of 26 ACP did not detect any recurrent mutations other than CTNNB1 mutations. BRAF V600E mutations were found in 94% of the PCP, but not in ACP. GISTIC analysis of MIP data showed no significant larger chromosomal aberrations but a fraction of ACP showed recurrent focal gains of chromosomal material, other cases showed loss in the chromosomal region Xq28, and a third group and the PCP had stable genomes. In conclusion, the crucial pathogenetic event appears to be WNT activation in ACP, whereas it appears to be activation of the Ras/Raf/MEK/ERK pathway by BRAF V600E mutations in PCP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.