[1] The M w 7.8 October 2010 Mentawai, Indonesia, earthquake was a "tsunami earthquake," a rare type of earthquake that generates a tsunami much larger than expected based on the seismic magnitude. It produced a locally devastating tsunami, with runup commonly in excess of 6 m. We examine this event using a combination of high-rate GPS data, from instruments located on the nearby islands, and a tsunami field survey. The GPS displacement time series are deficient in high-frequency energy, and show small coseismic displacements (<22 cm horizontal and <4 cm subsidence). The field survey shows that maximum tsunami runup was >16 m. Our modeling results show that the combination of the small GPS displacements and large tsunami can only be explained by high fault slip at very shallow depths, far from the islands and close to the oceanic trench. Inelastic uplift of trench sediments likely contributed to the size of the tsunami. Recent results for the 2011 M w 9.0 Tohoko-Oki earthquake have also shown shallow fault slip, but the results from our study, which involves a smaller earthquake, provide much stronger constraints on how shallow the rupture can be, with the majority of slip for the Mentawai earthquake occurring at depths of <6 km. This result challenges the conventional wisdom that the shallow tips of subduction megathrusts are aseismic, and therefore raises important questions both about the mechanical properties of the shallow fault zone and the potential seismic and tsunami hazard of this shallow region.Citation: Hill, E. M., et al. (2012), The 2010 M w 7.8 Mentawai earthquake: Very shallow source of a rare tsunami earthquake determined from tsunami field survey and near-field GPS data,
.[1] Tsunamis generated by deformable granular landslides are physically modeled in a three-dimensional tsunami wave basin based on the generalized Froude similarity. The dynamic landslide impact characteristics were controlled by means of a novel pneumatic landslide generator. The wave amplitudes, periods, and wavelengths are related to the landslide parameters at impact with the landslide Froude number being a dominant parameter. Between 1 and 15% of the landslide kinetic energy at impact is converted into the wave train energy. The wave amplitudes decay in radial and angular directions from the landslide axis. The first wave crest mostly travels with speeds close to the theoretical approximation of the solitary wave speed. The measured tsunami wave profiles were either of the nonlinear oscillatory or nonlinear transition type depending primarily on the landslide Froude number and relative slide thickness at impact. The generated waves range from shallow to deep water depth regimes, with the majority being in the intermediate water depth regime. Wave characteristics are compared with other two-and three-dimensional landslide tsunami studies and the results are discussed.Citation: Mohammed, F., and H. M. Fritz (2012), Physical modeling of tsunamis generated by three-dimensional deformable granular landslides,
Landslide generated impulse waves were investigated in a two-dimensional physical laboratory model based on the generalized Froude similarity. Digital particle image velocimetry (PIV) was applied to the landslide impact and wave generation. Areas of interest up to 0.8 m by 0.8 m were investigated. The challenges posed to the measurement system in an extremely unsteady threephase flow consisting of granular matter, air, and water were considered. The complex flow phenomena in the first stage of impulse wave initiation are: high-speed granular slide impact, slide deformation and penetration into the fluid, flow separation, hydrodynamic impact crater formation, and wave generation. During this first stage the three phases are separated along sharp interfaces changing significantly within time and space. Digital masking techniques are applied to distinguish between phases thereafter allowing phase separated image processing. PIV provided instantaneous velocity vector fields in a large area of interest and gave insight into the kinematics of the wave generation process. Differential estimates such as vorticity, divergence, elongational, and shear strain were extracted from the velocity vector fields. The fundamental assumption of irrotational flow in the Laplace equation was confirmed experimentally for these non-linear waves. Applicability of PIV at large scale as well as to flows with large velocity gradients is highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.