As a proxy to trace the impact of anthropogenic activity, sedimentary polycyclic aromatic hydrocarbons (PAHs) are compared between the early industrialized and newly industrialized countries of Germany and China, respectively. Surface sediment samples in the Ammer River of Germany and the Liangtan River of China were collected to compare concentration levels, distribution patterns, and diagnostic plots of sedimentary PAHs. Total concentrations of 16 PAHs in Ammer sediments were significantly higher by a factor of ~4.5 than those in Liangtan. This contrast agrees with an extensive literature survey of PAH levels found in Chinese versus European sediments. Distribution patterns of PAHs were similar across sites in the Ammer River, whereas they were highly varied in the Liangtan River. Pyrogenic sources dominated in both cases. Strong correlations of the sum of 16 PAHs and PAH groups with TOC contents in the Liangtan River may indicate coemission of PAHs and TOC. Poor correlations of PAHs with TOC in the Ammer River indicate that other factors exert stronger influences. Sedimentary PAHs in the Ammer River are primarily attributed to input of diffuse sources or legacy pollution, while sediments in the Liangtan River are probably affected by ongoing point source emissions. Providing further evidence of a more prolonged anthropogenic influence are the elevated black carbon fractions in sedimentary TOC in the Ammer compared to the Liangtan. This implies that the Liangtan River, like others in newly industrialized regions, still has a chance to avoid legacy pollution of sediment which is widespread in the Ammer River and other European waterways.
Suspended particles in rivers can act as carriers of potentially bioavailable metal species and are thus an emerging area of interest in river system monitoring. The delineation of bulk metals concentrations in river water into dissolved and particulate components is also important for risk assessment. Linear relationships between bulk metal concentrations in water (CW,tot) and total suspended solids (TSS) in water can be used to easily evaluate dissolved (CW, intercept) and particle-bound metal fluxes (CSUS, slope) in streams (CW,tot = CW + CSUS TSS). In this study, we apply this principle to catchments in Iran (Haraz) and Germany (Ammer, Goldersbach, and Steinlach) that show differences in geology, geochemistry, land use and hydrological characteristics. For each catchment, particle-bound and dissolved concentrations for a suite of metals in water were calculated based on linear regressions of total suspended solids and total metal concentrations. Results were replicable across sampling campaigns in different years and seasons (between 2013 and 2016) and could be reproduced in a laboratory sedimentation experiment. CSUS values generally showed little variability in different catchments and agree well with soil background values for some metals (e.g. lead and nickel) while other metals (e.g. copper) indicate anthropogenic influences. CW was elevated in the Haraz (Iran) catchment, indicating higher bioavailability and potential human and ecological health concerns (where higher values of CSUS/CW are considered as a risk indicator).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.